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Abstract In this paper, we present an omnidirectional

vision based method for object detection. We first adopt

the conventional camera approach that uses sliding win-

dows and Histogram of Gradients (HOG) features. Then,

we describe how the feature extraction step of the con-

ventional approach should be modified for a theoreti-

cally correct and effective use in omnidirectional cam-

eras. Main steps are modification of gradient magni-

tudes using Riemannian metric and conversion of gradi-

ent orientations to form an omnidirectional sliding win-

dow. In this way, we perform object detection directly

on the omnidirectional images without converting them

to panoramic or perspective images. Our experiments,

with synthetic and real images, compare the proposed

approach with regular (unmodified) HOG computation

on both omnidirectional and panoramic images. Results
show that the proposed approach should be preferred.

Keywords Catadioptric omnidirectional cameras ·
object detection · human detection · car detection ·
vehicle detection

1 Introduction

Detecting certain objects with cameras is an important

task for many research and application areas such as vi-

sual surveillance, ambient intelligence and traffic anal-

ysis. Last decade has witnessed significant advances in

object detection both in terms of effectiveness and pro-

cessing time. Quite a variety of approaches have been
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proposed for object detection. A major group in these

studies uses the sliding window approach in which the

detection task is performed via a moving and gradu-

ally growing search window. A significant performance

improvement was obtained with this approach by em-

ploying HOG (Histogram of Oriented Gradients) fea-

tures. Inspired by SIFT (Scale Invariant Feature Trans-

form) [17], Dalal and Triggs [7] proposed to use HOG for

the feature extraction step and they used SVM (Sup-

port Vector Machines) for the classification step. Later

on, this technique was enhanced with part based mod-

els [10] and with pyramid HOG features and Inter-

section Kernel SVM [18]. More recently, it was shown

that using combinations of features outperforms the ap-

proaches that use a single type of feature [24]. For a

detailed summary and comparison of methods, specific

to pedestrian detection, we refer readers to [9].

Omnidirectional cameras provide 360 degree hori-

zontal field of view in a single image (vertical field of

view varies). If a convex mirror is placed in front of a

conventional camera for this purpose, then the imaging

system is called a catadioptric omnidirectional camera.

An example image can be seen in Fig. 3. Despite its en-

larged view advantage, so far omnidirectional cameras

have not been widely used for object detection. This is

partly due to the resolution disadvantage. However re-

cent omnidirectional cameras have adequate resolution

to detect objects that cover a small part of the image.

Another reason is that the conventional camera meth-

ods should be mathematically modified to be used with

omnidirectional cameras. As described in Section 2, pre-

vious studies in this direction were focused on SIFT.

In a study on object recognition with omnidirec-

tional cameras [25], a mobile robot is given the images

of several objects in the environment and it is asked to

recognize these objects. Actually, the omnidirectional
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image is warped into a cylindrical panoramic image

before matching with the images of the objects using

SIFT. In [2], objects in an indoor office environment are

classified with a generative model, where the system is

first trained with annotated images from the same envi-

ronment. In [13], authors use Haar features to perform

face detection with catadioptric omnidirectional cam-

eras. Instead of modifying the feature extraction step,

they convert the omnidirectional images into panoramic

images and directly use the conventional (perspective)

camera technique. In a similar manner, panoramic im-

ages are used in [14] for human detection.

A human tracking method for omnidirectional cam-

eras is proposed in [23]. As a part of the proposed algo-

rithm, HOG features are computed. However, a rectan-

gular rotating and sliding window is used with no math-

ematical modification for the omnidirectional camera.

In this paper, we propose a modification for the con-

ventional approach to tackle object detection directly

on catadioptric omnidirectional images. That is, our

method does not require the conversion of the omni-

directional images to panoramic or perspective images.

Apart from the advantage of eliminating the image con-

version step, the detection performance of the proposed

method is superior as given in experiments section.

To our knowledge, the proposed method is the first

that mathematically modifies an object detection ap-

proach to be effectively used for omnidirectional cam-

eras. A second contribution is that we construct an

omnidirectional image dataset with annotated humans,

cars and vans and it can be downloaded from our web-

site 1. We believe this dataset will be useful to the com-

munity for omnidirectional vision based object detec-

tion research.

The organization of the paper is as follows. In Sec-

tion 2, we explain why our approach is theoretically

correct. We adopt HOG+SVM [7] approach for object

detection and as explained in Section 3, we modify the

HOG feature extraction step for catadioptric omnidi-

rectional cameras. Our experiments, given in Section

4 were held for human, car and van detection. Their

results indicate that the adaptation of HOG features

improves the performance when compared to the un-

modified HOG computation, i.e. rotating rectangular

windows. We also compare our method with object de-

tection on panoramic images converted from omnidi-

rectional ones and conclude that the proposed method

is superior especially for objects with a width/height

ratio <2.5.

This paper is an extended version of our previous

work [6], which included experiments with a limited

image dataset and considered only human detection.

1 http://cvrg.iyte.edu.tr/

2 Processing of omnidirectional images

Due to their non-linear imaging geometry, working with

omnidirectional cameras requires geometric transforma-

tions. At first sight, converting an omnidirectional im-

age to a panoramic or several perspective images may

seem to be a practical solution. However, it has two ma-

jor drawbacks: The conversion, which is a non-linear

warping, can be computationally expensive for large

video frames especially when an omnidirectional image

is converted to numerous perspective images to prop-

erly fit sliding windows. More importantly, the interpo-

lation required by the image warping introduces arti-

facts that affect the detection performance.

Among a small number of omnidirectional object

detection studies (cf. Section 1), none of them devel-

oped a method peculiar to omnidirectional cameras.

On the other hand, last decade witnessed some effort

on computing SIFT features in omnidirectional images.

Starting from [8], researchers tried to avoid warping om-

nidirectional images and instead they assumed a uni-

tary sphere S2 as the underlying domain of the im-

age function. When these studies (which consider the

convolution step of SIFT) are examined, several ap-

proaches can be observed. Below, we describe these ap-

proaches briefly.

1. The simplest approach would be backprojecting the

image onto a sphere surface S2 and convolving it

with a spherical Gaussian function GS [5]. Since this

approach requires resampling of the whole image,

authors in [8] project the kernel GS into image plane

instead of backprojecting the image onto S2, and the

convolution is carried directly on the image plane.

This avoids image resampling but since the mapped

Gaussian kernel changes at every image location it

leads to an adaptive filtering. This computational

complexity makes the solution unsuitable.

2. Another approach processes omnidirectional images

on the sphere after an inverse stereographic projec-

tion [12]. Scale space is computed with Gaussian

kernels on the sphere, while, the convolution is per-

formed using the spherical Fourier transform. It was

stated in [3] and [16] that this operation leads to

aliasing issues due to bandwidth limitations.

3. The processing on the sphere is achieved through

a suitable differential operator that adapts to the

non-uniform resolution, while using the original im-

age pixel values. In [4], scale space representation is

computed using the heat diffusion equation and dif-

ferential operators (Laplace-Beltrami operators) on

the non-Euclidean (Riemannian) manifolds. More-

over, authors in [3] tested this approach by evaluat-

ing the matching performance of SIFT. Lastly, au-
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Fig. 1 Projection of a 3D point onto the image plane in the
sphere camera model.

thors in [20] compared the original SIFT with the

version modified by Laplace-Beltrami operators on

the Riemannian manifolds and observed that the

modified version has a better performance. Later,

this approach was extended to radially distorted im-

ages as well [16] and also generalized to any camera

to produce camera invariant features [22].

Exploiting the experience gained by the summarized

work, we compute the gradients on Riemannian man-

ifolds (as in [3] and [4]) and adapt the gradient mag-

nitude computation step (Section 3.1) of our algorithm

accordingly. Since our study aims object detection, we

also modify the gradient orientations to form an omni-

directional sliding window (Section 3.2).

3 The proposed HOG computation

In the sliding window based object detection approach,

a window is moved horizontally and vertically on differ-

ent scales of an image. No rotation is applied since there

is an assumed orientation of the object, for instance

pedestrians should be upright. In a similar manner, to

detect objects in omnidirectional images, we rotate the

sliding window around the image center. In addition,

to achieve a mathematically correct detection method,

we modify the image gradients. The operations that we

perform can be divided into two steps:

1. Modification of gradient magnitudes using Rieman-

nian metric.

2. Conversion of gradient orientations to form an om-

nidirectional (non-rectangular) sliding window.

3.1 Modification of gradient magnitudes using the

Riemannian metric

3.1.1 Sphere camera model

We use the sphere camera model [11] which was in-

troduced to model central catadioptric cameras. The

Fig. 2 (a) A 3D point on the sphere is represented by two
angles (θ, ϕ). (b) Consider the unitary sphere (r = 1). Image
plane is placed at the south pole (f = 2). A 3D point is first
projected onto the sphere surface and then projected onto the
image plane, where in this case ξ = 1.

model comprises a unit sphere and a perspective cam-

era. The projection of 3D points can be performed in

two steps (Fig. 1). The first one is the projection of

point Q in 3D space onto a unitary sphere, resulting in

point r, and the second one is a perspective projection

from the sphere surface to the image plane, resulting

in point q. This model covers all central catadioptric

cameras with varying ξ.

A point on the sphere r = (X,Y, Z) can also be

represented by two angles (θ, ϕ), the former is the ver-

tical angle and the latter is the azimuth (Fig. 2a). In

para-catadioptric camera (the ones using a paraboloidal

mirror) ξ = 1. If we place the image plane at the south

pole (which only differs the scale), f = 2r = 2 and the

perspective projection within the sphere model corre-

sponds to the stereographic projection (Fig. 2b).

There are several methods to perform sphere camera

model calibration [21,19]. We used [19] since a MAT-

LAB toolbox is provided with it. In our experiments we

used a para-catadioptric camera (ξ=1). Focal length f

is the distance to the image plane. For a para-catadioptric

camera this is also equal to the distance between image

center and any point that is at the same horizontal level

with the camera center. Along with ξ and f , image cen-

ter coordinates (cx, cy) are used to modify the gradient

magnitudes as explained in Section 3.1.2.

3.1.2 Differential operators on Riemannian manifolds

Let us briefly describe how the differential operators on

the Riemannian manifolds are defined. Suppose M de-

notes a parametric surface on <3 and gij denotes the

Riemannian metric that encodes the geometrical prop-

erties of the manifold. In a local system of coordinates

xi on M, the components of the gradient are given by

∇i = gij
∂

∂xj
(1)

where gij is the inverse of gij .



4 Ibrahim Cinaroglu, Yalin Bastanlar

A similar reasoning is used in [3] and [20] to obtain

the Laplace-Beltrami operator, which is the second or-

der differential operator defined on and used for scale

space representation for SIFT. In this paper, we are

working on the first derivatives. Let us briefly go over

the para-catadioptric case and derive the metric that

allows us to compute the derivatives on the sphere di-

rectly using the image coordinates.

Consider the unitary sphere S2 with radius=1 (Fig.

2a). A point on S2 is represented in Cartesian and polar

coordinates as

(X,Y, Z) = (sin θ sinϕ, sin θ cosϕ, cos θ) (2)

The Euclidean line element in Cartesian coordinates,

dl, can be expressed in polar coordinates as

dl2 = dX2 + dY 2 + dZ2 = dθ2 + sin2 θdϕ2 (3)

The stereographic projection of the sphere model sends

a point on the sphere (θ, ϕ) to a point in polar coordi-

nates (R,ϕ) in the image plane (plane <2), for which

ϕ remains the same and θ = 2 tan−1(R/2) in a para-

catadioptric system (Fig. 2b).

Using the identities,R =
√
x2 + y2, ϕ = tan−1(y/x)

the line element reads

dl2 =
16

(4 + x2 + y2)2
(dx2 + dy2) (4)

giving the Riemannian inverse metric

gij =
(4 + x2 + y2)2

16
(5)

With this metric, we can compute the differential op-

erators on the sphere using the pixels in the omnidirec-

tional images. In particular, norm of the gradient reads

|∇S2I|2 =
(4 + x2 + y2)2

16
|∇<2I|2 (6)

We see that the para-catadioptric gradients are just the

scaled versions of the gradients in Euclidean domain.

Therefore, we multiply our gradients with metric gij .

At the center of the omnidirectional image, (x, y) =

(0, 0), Riemannian and Euclidean gradients are the same.

At an image location where
√
x2 + y2 = 2, which corre-

sponds to a 3D point at the same horizontal level with

the sphere center (mirror focal point), the Riemannian

metric is equal to 4. Therefore, the gradients are mag-

nified as we move from the center to the periphery of

the omnidirectional image.

The Riemannian metric for other catadioptric sys-

tems (with varying ξ) are derived in [20].

3.2 Conversion of gradient orientations for

omnidirectional sliding window

After the image gradients are obtained with Rieman-

nian metric, we convert the gradient orientations to

Fig. 3 Two cars in the omnidirectional image are indicated
with black frames. The one close to the camera covers a larger
area and it should be searched with a more bent sliding win-
dow, the other one is far away and it should be search with
a more straight sliding window

form an omnidirectional (non-rectangular) sliding win-

dow. The shape of the omnidirectional sliding window

varies according to the size and location of the object

in the omnidirectional image. As depicted in Fig.3, a

car close to the camera is severely bent. However, a

window covering the car at a distance is close to a

rectangle. The difference can not be represented with

a scale ratio, therefore we are not able to train one

object model for detection in omnidirectional images.

Since it did not seem plausible to train many omni-

directional HOG models, we chose to train our object

models with perspective image datasets. Gradients in

the sliding window should be computed as if a perspec-

tive camera is looking from the same viewpoint.

Fig. 4a shows a half of a synthetic para-catadioptric

omnidirectional image (400x400 pixels) where the walls

of a room are covered with rectangular black and white

tiles. Conventional HOG result of the marked region

(128x196 pixels) in this image is given in Fig. 4b where

the gradient orientations are in accordance with the

image. However, since these are vertical and horizontal

edges in real world, we need to obtain vertical and hor-

izontal gradients. Fig. 4d shows converted gradients for

the region marked in Fig. 4c, which is an example of

the proposed HOG computation.

To obtain the gradients in Fig. 4d from the image in

Fig. 4c, we performed a transformation from polar to

Cartesian coordinates without using any camera cal-

ibration information. Both gradient orientations and

gradient magnitudes in the proposed HOG window are

computed from the omnidirectional image using bilin-

ear interpolation with backward mapping. While trans-

forming coordinates, the height and width of rectangu-

lar area in Fig. 4d are kept equal to the thickness and

center arc length of the doughnut slice marked in Fig.

4c respectively.
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Fig. 4 Description of how the gradients are modified for an
omnidirectional sliding window. Result in (b) is the regular
HOG computed for the region marked with dashed lines in
(a). Modified HOG computation gives the result in (d) for
the region marked in (c). Vertical and horizontal edges in
real world produce vertical and horizontal gradients in the
modified version.

4 Experiments

Our experiments consider the detection of standing hu-

mans, cars and vans. For human detection, we trained a

128x64 model using INRIA person dataset as described

in [7]. For car detection, we trained a 40x100 model us-

ing UIUC [1] and Darmstadt [15] sets together totalling

602 car side views. The model trained for van detection

is 40x100 as well. For this object type, we constructed a

database of 107 images containing vans viewed from ei-

ther side. While training all object models, the number

of the negative samples in the dataset were increased

by collecting so-called ’hard-negatives’. These are the
false-positive detections of the initial model that was

trained with the original positive and negative samples.

4.1 Evaluation of the proposed HOG computation

using synthetic omnidirectional images

Let us first compare the results of the proposed and

the regular (unmodified) HOG computation. Since the

computed HOG features are given to an SVM trained

with an image dataset of corresponding object type, we

aim to obtain higher SVM scores with the proposed

omnidirectional HOG computation.

We artificially created 210 omnidirectional images

containing humans, following an approach similar to

[12]. Images in INRIA person dataset are projected to

omnidirectional images using certain projection angle

and distance parameters. Fig. 5 shows an example om-

nidirectional image, where the regular HOG window

(rectangular, 128x64 pixels) and the proposed omni-

Fig. 5 Depiction of the regular HOG window (green rect-
angle) and the proposed window (red doughnut slice) on an
omnidirectional image artificially created by projecting a per-
spective image from INRIA person dataset.

Table 1 Comparison of the regular and proposed HOG win-
dow by their SVM scores for human detection

Min.
score

Lower
quart.

Mean
score

Upper
quart.

Max.
score

Regular HOG -1.01 1.16 1.69 2.20 3.21
Proposed HOG -0.42 1.51 1.93 2.45 3.64

Table 2 Comparison of the regular and proposed HOG win-
dow by their SVM scores for car detection

Min.
score

Lower
quart.

Mean
score

Upper
quart.

Max.
score

Regular HOG -1.81 -0.38 -0.09 0.24 1.17
Proposed HOG -1.55 -0.17 0.19 0.55 1.79

directional HOG window (non-rectangular) are shown.

The HOG features computed with the two window types

are compared with their resultant SVM scores. Since

the locations of projections in these images are known,

no search is needed for this experiment. However, ver-

tical position of the window affects the result. For both

approaches, we chose the position that gives the high-

est mean SVM score. Table 1 summarizes the result of

the comparison, where we see that the mean score (also

minimum, maximum and quartiles) for the proposed

approach is higher than that of regular HOG window.

For synthetic car images, 602 perspective car images

from UIUC [1] and Darmstadt [15] datasets are pro-

jected to omnidirectional images. 40x100 pixel regular

HOG computation and the proposed non-rectangular

HOG window are compared in Table 2. The result is

in accordance with the human detection experiment:

mean SVM score, together with minimum, maximum

and lower/upper quartiles, for the proposed approach

is higher than the regular method.

4.2 Experiments of human detection in real images

In this subsection, we present the results for a set of im-

ages taken with our catadioptric omnidirectional cam-

era. We compared the proposed HOG computation not
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(a) (b)

(c)

Fig. 6 Human detection results on an omnidirectional image
with SVM scores (at upper left corners) greater than 1. (a)
Proposed sliding windows. (b) Regular sliding and rotating
windows. (c) Regular sliding windows on panoramic image.

only with the regular HOG window, but also with the

approach that first converts the omnidirectional image

to a panoramic image and then performs regular HOG

computation. Although it was explained in Section 2

that working on panoramic images is not a theoreti-

cally correct approach, if the performance of detection

on panoramic image is high it can still be considered as

an option for practical applications.

Fig. 6 shows the results for one of the images in

the dataset. Positive detections, after non-maximum

suppression, are superimposed on the images with the

proposed HOG window, the regular HOG window on

omnidirectional image and HOG after panoramic con-

version. The corresponding SVM score of each window

is given at the upper left corner. Since a fixed size ob-

ject (128x64) is searched in gradually resized versions of

the original image, different sizes of detection windows

seen in the figure correspond to detected objects in dif-

ferent scales. Since the feet of the body is very close to

the blind spot of the camera and 128x64 human object

model has a 16-pixel margin around the body, the best

scoring windows usually exceed to the blind spot. The

motion of the omnidirectional sliding window is based

on polar coordinates. Each time, it turns by a fixed an-

gle around the center and when the circle is completed,

radius is changed. For the proposed HOG window, 64 is

the length of the center arc and 128 is the thickness of

the doughnut slice. For a fair comparison, the number of

windows checked is equalized for all three approaches.

For the humans in Fig. 6, the average SVM scores

for the proposed HOG, the regular HOG and HOG on

Fig. 7 Precision-Recall curves to compare the proposed
HOG computation, the regular HOG and HOG after
panoramic conversion approaches for human detection. The
data points in the curve correspond to the varying threshold
values for the SVM score, which change from 0 to 5. As the
threshold increases, all approaches reach Precision=1.

panoramic image approaches are 2.94, 2.11 and 2.41 re-

spectively. To evaluate the overall performance of these

three approaches, we plot precision-recall curves for the

whole dataset which consists of 30 real omnidirectional

images taken in different scenes including indoor and

outdoor environments (Fig. 7). A total of 66 humans

were annotated in these images. The larger the area

under the curve, the better the performance of the al-

gorithm. One can observe that the performance of the

proposed HOG computation is better than the others.

Only for a limited range regular HOG performs better.

When recall >0.5, the proposed approach is distinc-

tively superior.

A detection window is considered to be a True-

positive if it overlaps an annotation by 50% (following

the advice in [9]), where the overlap is computed as

O =
area(detectionwindow ∩ annotation)

area(detectionwindow ∪ annotation)
(7)

For a fair comparison, the annotations are sepa-

rately prepared for the mentioned three methods. An-

notations of the proposed HOG approach are dough-

nut slices (e.g. Fig.6a), annotations of the regular HOG

approach are rectangles rotating around the omnidi-

rectional image center, and annotations of HOG on

panoramic image approach are upright rectangles. While

annotating, a margin is left around the object to be in

accordance with the training set images.

4.3 Experiments of car detection in real images

We repeated the comparisons between the evaluated

methods for car detection. Fig. 8 shows the results for a

single image as an example. For the overall performance
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(a) (b)

(c)

Fig. 8 Results of car detection on an omnidirectional image
with SVM scores (at upper left corners) greater than -0.5.
(a) Proposed sliding windows. (b) Regular sliding/rotating
windows. (c) Regular sliding windows on panoramic image.

Fig. 9 Precision-Recall curves to compare the proposed
HOG computation, the regular HOG and HOG after
panoramic conversion approaches for car detection. The data
points in the curve correspond to the varying threshold values
for the SVM score, which change from -1.0 to 1.5.

comparison of the proposed HOG computation, the reg-

ular HOG computation and HOG after panoramic con-

version approaches, we plot precision-recall curves (Fig.

9) for our dataset that includes 50 real images contain-

ing a total of 65 annotated cars.

When we compare the results in Fig. 9 with the

ones in Fig. 7, one observation would be that now the

proposed method is better than the regular HOG every-

where. This is due to the fact that car is a wider object

than human. The regular HOG computation is affected

more as the width/height ratio of the object model in-

creases because it tries to fit a rectangle to the object

in the omnidirectional image, which is bent more.

A second observation would be the increased per-

formance of detection on panoramic image. It is now

comparable to the proposed method. This can also be

explained by the fact that car has a ’wide’ model with

(a) (b)

(c)

Fig. 10 Results of van detection on an omnidirectional image
with SVM scores (at upper left corners) greater than -0.5.
(a) Proposed sliding windows. (b) Regular sliding/rotating
windows. (c) Regular sliding windows on panoramic image.

a width/height ratio of 2.5. It is harder for taller object

models, like standing humans, to maintain the origi-

nal width/height ratio in panoramic images. Since the

panoramic image is created on a cylindrical surface ro-

tating around the viewpoint, as we move down on the

surface, same amount of viewing angle starts to cover a

larger height in the image. This can be observed in the

lower parts of Fig. 6c.

4.4 Experiments of van detection in real images

As a third object type, we performed experiments on

van detection. Fig. 10 shows the results for a single

image. For this image we observe that all three methods

has a true-positive detection, however score obtained

with the proposed method (Fig. 10a) is higher than the

score obtained on panoramic image (Fig. 10c) which

is relatively higher than the score with regular HOG

on omnidirectional image (Fig. 10b). Precision-Recall

curves in Fig. 11 show overall performance comparison

for our dataset that includes 50 real images containing

a van each. We used 57 other van images as a positive

training set.

This time, the proposed approach is consistently

better than HOG on panoramic approach. Regular HOG

approach again has the worst performance since the

vans we work on are wide objects similar to cars. One

can also observe that Recall=1 can be reached for low

thresholds for all three approaches. This is explained

by the fact that test and training images are chosen

from the same dataset that we built. However for car

detection experiment, the training images were from a

publicly available dataset.
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Fig. 11 Precision-Recall curves to compare the proposed
HOG computation, the regular HOG and HOG after
panoramic conversion approaches for van detection.

.

5 Conclusions

We aimed to perform object detection directly on the

omnidirectional images. As a base, we took the HOG+

SVM approach which is one of the popular object detec-

tion methods. After describing how the feature extrac-

tion step of the conventional method should be mod-

ified, we performed experiments to compare the pro-

posed method with the regular HOG computation on

omnidirectional and panoramic images. Results of the

experiments indicate that the performance of the pro-

posed approach is superior to the regular approach. The

performance of regular HOG on panoramic image is

partially comparable to the proposed approach for ob-

jects that have high width/height ratio (such as cars).

Having a high width/height ratio is an advantage for

detection on panoramic image but a disadvantage for

applying regular HOG on omnidirectional images. One

should also note that the detection on panoramic im-

ages has the disadvantage of requiring image conversion

beforehand.

In this work, we concentrated on HOG features for

object detection. However, other features, especially the

ones based on image derivatives can be modified in a

similar fashion for a theoretically correct and effective

use in omnidirectional cameras.
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