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and my co-supervisor Dr. Emrah Tomur. Dr. Özuysal has mentored me over many
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ABSTRACT

IMPROVING LOW-BUDGET SEMI-SUPERVISED APPROACHES FOR
MODEL EXTRACTION ATTACKS

Machine learning (ML) models are widely adopted across numerous fields due

to their effectiveness; however, training high-accuracy models often involves substan-

tial costs. To address this, Machine Learning as a Service (MLaaS) platforms provide

cloud-based, black-box models accessible through APIs (Application Programming In-

terface), which raises security concerns like model extraction attacks (MEA). An MEA

seeks to replicate a cloud-deployed ML model solely using black-box queries. This thesis

proposes a cost-effective and accurate model extraction attack where unlabeled data is

readily available, but labeled data is costly. Existing literature suggests strategies such as

creating synthetic datasets, selecting data via active learning, and using semi-supervised

learning. This thesis instead adopts a self-supervised learning approach for attacking a

black-box model via an API. The method assumes the adversary access to a large pool of

unlabeled data, which is used to train a self-supervised SimCLR model. A subset of the

unlabeled data is queried through the target model to create a transfer dataset, which fine-

tunes a multi-layer perceptron (MLP) added to the SimCLR encoder, forming the baseline

substitute model. To enhance the substitute model accuracy, automatic labeling assigns

high-confidence predictions directly as labels to the unlabeled data, while low-confidence

samples are labeled based on similarity to target-labeled data. Incorporating high-entropy

data during training enables the model to capture complex patterns and increase data di-

versity, ultimately enhancing the substitute model’s accuracy. The method’s effectiveness

is demonstrated through experiments on CIFAR-10 and SVHN datasets.
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ÖZET

MODEL ÇIKARMA SALDIRILARI İÇİN DÜŞÜK BÜTÇELİ
YARI-DENETİMLİ YAKLAŞIMLARIN İYİLEŞTİRİLMESİ

Makine öğrenimi (ML) modelleri, etkinlikleri nedeniyle birçok alanda yaygın

olarak kullanılmaktadır; ancak yüksek doğruluğa sahip modelleri eğitmenin maliyeti

de yüksektik. Bu bağlamda, MLaaS (Machine Learning as a Service) platformları,

API’ler aracılığıyla erişilebilen bulut tabanlı kara kutu modeller sunarak, model çalma

saldırıları gibi güvenlik sorunlarını gündeme getirmektedir. Model çalma saldırıları, bu-

lutta konuşlandırılmış bir makine öğrenimi modelini yalnızca kara kutu sorgulamalarıyla

kopyalamayı amaçlamaktadır. Bu tez çalışmasında, etiketlenmemiş veriye erişimin kolay

olduğu ancak etiketli verinin maliyetli olduğu senaryolarda, maliyet etkin ve yüksek

doğruluklu bir model çalma saldırısı geliştirilmiştir. Literatürde sentetik veri setleri

oluşturma, doğal veri setlerinden aktif öğrenme ile veri seçme ve yarı denetimli öğrenme

gibi stratejiler önerilmektedir. Bu çalışmada ise, API üzerindeki kara kutu bir modele

saldırmak için öz-denetimli öğrenen modellerden faydanılması önerilmiştir. Bu yöntemde,

saldırganın geniş bir etiketlenmemiş veri havuzuna erişimi olduğu varsayılmakta ve bu veri,

öz-denetimli SimCLR modelini eğitmek için kullanılmaktadır. Etiketsiz veri kümesinden

belirli bir alt küme seçilir ve hedef modele sorgular gönderilerek bu veriler etiketlenir.

Bu işlem sonucunda transfer veri seti oluşturulur. İlk ikame model, transfer veri setiyle

SimCLR encoder’ına eklenen bir çok katmanlı algılayıcı (MLP)’nın ince ayar yapılarak

eğitilmesi ile elde edilir. İkame modelin doğruluğunu artırmak için kalan etiketlenmemiş

verilere otomatik etiketleme uygulanır; yüksek güvenli çıktılar doğrudan etiket olarak

kullanılırken, düşük güvenli çıktılar hedef modelin etiketlediği örneklerle olan benzerliğe

göre etiketlenir. Bu süreç, modelin karmaşık örüntüleri öğrenmesini ve veri çeşitliliğini

artırmasını sağlayarak ikame modelin doğruluğunu hedef modele yaklaştıracak şekilde

artırır. Önerilen methodun verimliliği CIFAR10 ve SVHN datasetleri üzerinde deneyler

yapılarak verilmiştir.

v



To my lovely children; Eymen and Kerem.

vi



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Aim of Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2. Background and Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1. Model Extraction Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Literature Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1. Synthetic Query Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2. Natural Query Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

CHAPTER 3. Semi-supervised Model Extraction Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2. Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1. Baseline Semi-Supervised Model Evaluation . . . . . . . . . . . . . . . . . . 20

3.2.2. Performance Analysis of Proposed Method on Problem Do-

main Query Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3. Benchmark Comparison and Performance Analysis of Pro-

posed Method on Private Dataset Query Data. . . . . . . . . . . . . . . . . . 24

3.3. Ablation Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1. Effect of Pseudo-Labeling Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1.1 Pseudo-Label by Confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1.2 Pseudo-Label by Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2. Impact of Threshold Values on Pseudo-Labeling Strategies . . . 28

vii



3.3.2.1 Impact of Threshold Values on Confidence-Based Pseudo-

Labeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2.2 Impact of Threshold Values on Similarity-Based Pseudo-

Labeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3. Time Analysis of the Model Extraction Process . . . . . . . . . . . . . . . 34

CHAPTER 4. Use Case on Chest X-ray Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

CHAPTER 5. Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1. Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2. Adversary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1. Adversary’s Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.2. Adversary’s Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.3. Adversary’s Goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3. Trust Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4. Attack Surface and Attack Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5. Threat Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.6. Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

CHAPTER 6. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

viii



LIST OF FIGURES

Figure Page

Figure 2.1. Model Extraction Attack Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 3.1. Fine-tuning Procedure of Self-supervised SimCLR Model . . . . . . . . 15

Figure 3.2. Semi-supervised Model Extraction Attack Stages . . . . . . . . . . . . . . . . . . 19

Figure 3.3. Effect of Confidence Threshold on Dataset Size and Dataset Ac-

curacy Across Varying Query Budgets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 4.1. Sample Images from Kaggle’s Chest X-Ray Images (Pneumonia)

dataset (Kermany 2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.2. Process of Transfer Dataset Creation from Query Interactions. . . . . 37

Figure 4.3. Workflow for Constructing the Final Substitute Model through

Pseudo-Labeling and Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



LIST OF TABLES

Table Page

Table 2.1. Summary of Model Extraction Attack Terminology . . . . . . . . . . . . . . . . . 9

Table 2.2. Model Extraction Attack Literature Which Uses Natural Dataset

While Conducting Attack. Model abbreviations; LR: Logistic Re-

gression, MLR: Multilayer Perceptron, CNN: Convolutional Neu-

ral Network, DNN: Deep Neural Network, k-SVM: Kernel-Support

Vector Machine, DT: Decision Tree, NB: Naive Bayes. . . . . . . . . . . . . . 13

Table 3.1. Semi-supervised Baseline Substitute Models Test Accuracy Results

on CIFAR-10 Dataset for Varying Size Query Budgets. . . . . . . . . . . . . . 21

Table 3.2. Experimental Results on CIFAR-10 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 23

Table 3.3. Experimental Results on SVHN Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Table 3.4. Classification Test Results of Benchmark Semi-Supervised Learn-

ing Approaches and Proposed Method Across Different Query Bud-

gets on CIFAR-10 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 3.5. Accuracy of the Confidence-based Pseudo-labeled Dataset Gener-

ated Using the Baseline Self-Supervised Substitute Model and Test

Accuracy of the Substitute Model Trained on the Confidence-based

Pseudo-labeled Dataset. This table represents the results obtained

by following the sequential process outlined in Steps A-B-C-D as

illustrated in Figure 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 3.6. Effect of Threshold Values and Number of Sampling on Dataset Ac-

curacy and Sample Selection in Similarity-Based Pseudo-labeling.

The table indicates the results for a transfer dataset size of 4000 and

an unlabeled dataset size of 50,000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 3.7. Execution Time Breakdown for Each Stage of the Model Extraction

Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

x



CHAPTER 1

INTRODUCTION

Machine learning (ML) models have been widely adopted in recent years in diverse

industries, revolutionizing areas such as healthcare, finance, and autonomous systems.

This popularity is largely due to their ability to learn complex patterns from large datasets,

enabling them to make highly accurate predictions and solve problems that were previously

difficult or impossible to tackle. However, despite their success, creating high-performing

ML models is costly and labor-intensive. Training these models often requires vast amounts

of data, significant computational resources, expert knowledge, and a long development

cycle, making them valuable intellectual properties.

Therefore, companies and researchers have increasingly relied on machine learning

as a service (MLaaS) platforms to reduce the financial and resource demands of training

efforts. These platforms offer pre-trained models hosted on the cloud, accessible to clients

through Application Programming Interfaces (APIs). This model-sharing approach has

become highly popular for its convenience, allowing users to leverage powerful ML mod-

els without internal development or maintenance procedures. MLaaS platforms typically

follow a pay-per-query basis, where users submit input data to a black-box system and re-

ceive corresponding predictions without gaining any insight into the model’s architecture,

hyperparameters, or training data. Although this service model benefits clients by reduc-

ing computational costs and speeding up deployment, it also introduces serious security

and privacy challenges.

One of the primary concerns in this black-box setting is the vulnerability of ML

models to model extraction attacks (MEA). A model extraction attack occurs when an

adversary, through repeated queries to a target model, attempts to reconstruct a copy of the

model’s functionality without access to its internal details. A model extraction attack aims

to replicate the target model’s decision-making process or general functionality, allowing

the adversary to create a substitute model that performs similarly to the original. Moreover,

the substitute model can be used for various malicious purposes, ranging from the theft

of intellectual property (adversary can deploy a similar model locally without incurring

development costs) to enabling more dangerous attacks, such as evasion attacks (Papernot
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et al. 2017), where adversarial examples are crafted to deceive the model, and membership

inference attacks, which aim to determine whether specific data points were part of the

model’s training set.

Model extraction can have severe consequences for businesses that depend on

proprietary ML models as key assets. A substitute model can reduce the business value of

the original model by providing similar functionality at a lower cost, potentially weakening

its market position. Additionally, a substitute model can be used as a white-box model to

expose weaknesses in the target model, paving the way for further attacks, such as privacy

breaches and security issues. Given the significant risks posed by model extraction attacks,

it becomes crucial to thoroughly investigate their mechanisms to better understand their

impact and inform the development of robust defenses.

Understanding and studying model extraction attacks (MEAs) is critical for advanc-

ing the field of machine learning security. Although defenses are essential for mitigating

potential risks, their development must be informed by a deep understanding of the attack

mechanisms to which they are designed to counteract. By focusing on attacks, this re-

search aims to uncover inherent vulnerabilities in machine learning models, particularly

those deployed in black-box settings such as MLaaS platforms. Studying attacks provides

valuable information on how adversaries exploit these vulnerabilities, enabling the identi-

fication of weaknesses that might otherwise go unnoticed. Furthermore, the development

of novel attack strategies can act as a stress test for existing defenses, highlighting their

limitations and guiding the creation of more robust protective measures. Without a com-

prehensive understanding of attacks, defensive strategies risk being incomplete, overly

reliant on assumptions, or ineffective against evolving adversarial tactics. Accordingly,

this thesis prioritizes the study of model extraction attacks to contribute to a more holistic

understanding of the threat landscape, ultimately aiding in the design of effective and effi-

cient defense mechanisms in future work. This proactive approach ensures that defenses

are not only reactive, but also resilient against the sophisticated and resourceful techniques

employed by attackers.
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1.1. Problem Definition

Model extraction attacks have emerged as a critical concern in the domain of

machine learning security, particularly for Machine Learning-as-a-Service (MLaaS) plat-

forms (Oliynyk, Mayer, and Rauber 2023), (Genç, Özuysal, and Tomur 2023). In black-box

settings, adversaries aim to replicate the decision-making process of a target model with-

out access to its internal architecture, hyperparameters, or training data. The attacker

collects input-output pairs by querying the target model via an API and uses these data to

train a local substitute model. A major challenge in such attacks is optimizing the query

budget, as the number of queries directly impacts the cost of the attack and the likelihood

of detection. Traditional methods for creating substitute models are heavily based on

supervised learning (Tramèr et al. 2016),(Papernot et al. 2017),(Pal et al. 2020), which

requires a substantial amount of labeled data. This creates a trade-off: while more queries

provide better training data for the substitute model, they also increase the cost and risk of

detection, limiting the practicality of the attack.

To address the challenge of minimizing query costs, prior research has explored

synthetic query generation, active learning, and reinforcement learning to optimize query

selection (Genç, Özuysal, and Tomur 2023). Although these strategies improve efficiency,

they often fail to achieve substitute model accuracy comparable to the target model. Semi-

supervised approaches, such as those proposed by Jagielski et al. (Jagielski et al. 2020),

have demonstrated promising results in reducing the query budget while maintaining

high substitute model accuracy. However, existing semi-supervised methods, such as

MixMatch (Berthelot et al. 2019), rely on complex techniques such as consistency reg-

ularization and entropy minimization, making them challenging to implement without

significant computational resources and technical expertise. This creates a gap for devel-

oping more accessible and efficient methods that balance query efficiency and substitute

model performance, particularly in adversarial scenarios where resources are limited.

1.2. Aim of Thesis

This thesis aims to develop an innovative and resource-efficient approach to model

extraction attacks (MEAs) in black-box MLaaS settings by leveraging contrastive self-

3



supervised learning frameworks. Contrastive self-supervised learning is chosen as the

foundation for this work because it effectively addresses the critical trade-offs in MEAs.

Unlike traditional supervised approaches that require a significant amount of costly labeled

data, contrastive self-supervised learning relies on abundant unlabeled data to learn high-

quality, generalizable representations. This reduces the dependency on labeled datasets,

thereby lowering the query budget needed for training a substitute model. In addition,

self-supervised pre-trained models are both widely available and easy to fine-tune, making

them an attractive option for adversaries with limited computational resources or tech-

nical expertise. By utilizing the pre-trained representations derived from these models,

the proposed method seeks to enhance the efficiency and practicality of model extraction

attacks significantly. This approach effectively addresses the primary limitations of ex-

isting methods in the literature, offering a strategy for model extraction that is not only

cost-effective but also straightforward and resource-efficient.

The core research question driving this thesis is: How can contrastive self-

supervised learning be leveraged to perform efficient and effective model extraction attacks

in black-box MLaaS settings while minimizing the query budget and achieving high substi-

tute model accuracy? By addressing this question, the thesis seeks to resolve the trade-offs

between query budget, attack efficiency, and model performance that have plagued exist-

ing methods. The choice of contrastive self-supervised learning not only aligns with the

need for a practical and cost-effective solution but also highlights the potential of these

frameworks in advancing the state-of-the-art in model extraction attacks. The research

findings aim to provide new insights into adversarial strategies while also offering valuable

guidance for developing more robust defenses against such attacks.

1.3. Contribution of the Thesis

This thesis presents a novel approach to model extraction attacks by leverag-

ing contrastive self-supervised learning methods to minimize query budget requirements

while maintaining high substitute model accuracy. The proposed methodology inte-

grates SimCLR-based feature learning with pseudo-labeling strategies, establishing a cost-

effective and efficient framework for constructing accurate substitute models in black-box

attack scenarios. The contributions of this work are summarized as follows:

4



• A new model extraction approach based on the SimCLR contrastive self-supervised

learning framework has been developed to extract meaningful representations from

unlabeled data. This method reduces the need for large labeled datasets, making the

attack more cost-effective and practical for real-world applications.

• The proposed method has been shown to outperform existing techniques, such as

MixMatch (Jagielski et al. 2020), particularly in low-query scenarios. It achieves

state-of-the-art results by efficiently balancing query budget and model performance.

• A comprehensive threat model has been outlined to better understand the risks

associated with model extraction attacks. This includes an analysis of adversarial

capabilities, attack surfaces, and the potential consequences for machine learning

systems, offering a foundation for future work on defensive strategies.

• Extensive experiments and ablation study have been conducted to evaluate the

effectiveness of the proposed approach. The results highlight its scalability and

adaptability, demonstrating its potential to address the limitations of current model

extraction techniques.

• The proposed method has been applied to the medical domain using the Chest X-

ray dataset, demonstrating its feasibility in real-world healthcare applications. The

results validate the approach’s ability to extract high-performing substitute models

even in domains where labeled data is scarce, highlighting its potential impact on

medical AI security and robustness.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1. Model Extraction Attack

A model extraction attack (MEA) occurs when an attacker attempts to build a

machine learning model that closely matches, or even exceeds, the performance of a target

model with less effort than it would take to train a new model from scratch. The attacker’s

main objective is to replicate the decision-making process or functionality of the target

model by repeatedly querying it. Essentially, the attacker uses the target model as a guide.

Tramer et al. (Tramèr et al. 2016) introduced one of the earliest model extraction attacks,

targeting traditional models such as logistic regression to extract parameters and trying to

recreate the decision boundaries of models such as support vector machines (SVM) and

multilayer perceptrons (MLP).

In this attack, the attacker starts by sending a set of inputs to the target model,

which is often hosted on an API, and collects the resulting predictions as output. These

input-output pairs then serve as data for training a new model, often called the substitute

model, which is intended to mirror the behavior of the original model. This extraction

process takes place in a black box setting, which means that the attacker does not have

direct information about the model’s internal parameters, architecture, hyperparameters, or

training data distribution. The only interaction with the target model is through querying

inputs and receiving outputs. Figure 2.1 illustrates the process of a model extraction

attack, and frequently used terminology related to model extraction is provided in Table

2.1 below.

Definition 1. Target Model

The target model is the machine learning model that the adversary aims to replicate.

Typically deployed as a cloud-based MLaaS (Machine Learning as a Service) solution, it

provides users with black-box access, meaning its internal structure remains hidden. This

target model can be any of the widely used machine learning models discussed in the

literature. The target model may employ linear or non-linear supervised algorithms for

discriminative tasks, such as logistic regression, support vector machines (SVM), or neural
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networks (NN). In such cases, a target model 𝑓𝑇 receives an input 𝑥 ∈ R𝑛 and produces

an output 𝑓𝑇 (𝑥) = 𝑦 ∈ R𝐾 . Generative models, such as Generative Adversarial Networks

(GANs) and Variational Autoencoders (VAEs), are also used as target models; in these

instances, the model learns the training data distribution and generates images resembling

the learned samples, with the adversary aiming to replicate this learned distribution. The

target model is sometimes referred to as the ”victim” or ”secret” model in the literature,

but we will consistently refer to it as the target model 𝑓𝑇 .

Query
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Target Model 
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Figure 2.1. Model Extraction Attack Overview

Definition 2. Substitute Model

The substitute model is a clone or copy of the target model. The adversary aims to con-

struct a local model that behaves as functionally similar as possible to the target model.

The substitute model, denoted as 𝑓𝑆, is trained on a transfer dataset. In the literature, this

model is also referred to as a knock-off (Orekondy, Schiele, and Fritz 2019), surrogate,

clone, or extracted model. We will refer to this model as the substitute model 𝑓𝑆 (Tramèr

et al. 2016; Jagielski et al. 2020).

Definition 3. Transfer Dataset

In a model extraction attack, the transfer dataset serves as a link between the target and
7



substitute models. The transfer dataset is denoted by 𝐷𝐴 = {𝑥𝑖, 𝑓𝑇 (𝑥𝑖)}𝑁𝑖=0, where 𝑁 rep-

resents the query budget. It consists of input-output pairs obtained by querying the target

model. The attacker uses this dataset to train a local model that imitates the target model’s

behavior, effectively treating the target model as a source of labels. This approach reduces

the need for large labeled datasets, allowing the attacker to build a substitute model that

closely approximates the functionality of the original model at a reduced cost.

Definition 4. Private Dataset

The private dataset 𝐷𝑃 = {𝑥𝑖, 𝑦𝑖}𝑀𝑖=0 refers to the training dataset of the target model. This

dataset is proprietary and confidential, and it is generally assumed that the adversary has

no access to it nor even to its underlying distribution. In the literature, the private dataset

is also referred to as the secret dataset.

Definition 5. Surrogate Dataset

In a model extraction attack, the choice of query samples is crucial, as the goal is to extract

the maximum information from the model with a minimal number of queries. The dataset

from which these queries are sampled is called the surrogate dataset. Ideally, the surrogate

dataset should have a distribution that closely resembles the private dataset. This dataset

may consist of publicly available datasets, such as CIFAR10, MNIST, or ImageNet, or

it can be crafted manually using methods like GANs. This dataset is also known as the

thief, adversary, or surrogate dataset in the literature. We will refer to it as the surrogate

dataset, 𝐷𝑆.

Definition 6. Accuracy Extraction

The goal of accuracy extraction is to maximize the task accuracy of the substitute model,

defined as max [argmax( 𝑓𝑠 (𝑥𝑖)) = 𝑦𝑖].

Definition 7. Fidelity Extraction

The goal of fidelity extraction is for the substitute model to closely match the target

model, represented by max [argmax( 𝑓𝑡 (𝑥𝑖)) = argmax( 𝑓𝑠 (𝑥𝑖))]. This ensures that any

errors made by the substitute model are consistent with those of the target model.

For clarity, Table 2.1 provides a summary of the terminology discussed above.
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Table 2.1. Summary of Model Extraction Attack Terminology

Notation Terminology Berief Definition
𝑓𝑇 Target Model Model under attack
𝑓𝑆 Substitute Model Locally constructed model
𝐷𝑃 Private Dataset Target model’s training dataset
𝐷𝑆 Surrogate Dataset Dataset where the queries are selected
𝐷𝐴 Transfer Dataset Substitute model’s training dataset

2.2. Literature Review

The study of model extraction attacks has evolved considerably since the concept

was first introduced. Early works were primarily concerned with adversarial attacks on

simple models, particularly linear classifiers, but recent research has expanded the scope

to include deep learning architectures, generative models, and advanced query techniques.

This literature review examines the evolution of model extraction techniques from the

query source perspective.

The roots of model extraction can be traced back to the work of Lowd and Meek

(Lowd and Meek 2005), who introduced the concept of adversarial learning for linear

binary models. Their attack, which targets reproducing the model’s weights, operates by

identifying sign witness pairs, which are two samples that differ in only one feature and

belong to different classes. The attack works by adjusting the feature values of a sample

and performing a line search to extract the model’s weight values accurately. This allows

the adversary to build a replication of the target model that performs the same as the

original. To carry out this attack, the adversary must know the target model’s architecture

and have two data points; one positive and one negative. Although the attack can perfectly

extract the model’s weights, it has a major drawback: inefficiency. It requires at least

11 queries per parameter, which makes it unsuitable for larger models. This limitation

reduces the attack’s ability to scale, especially for more complex models.

Later, (Tramèr et al. 2016) proposed an attack that efficiently extracts the learned

parameters from models such as Multi-class Logistic Regression and Multi-Layer Percep-

tron, requiring fewer queries. They sent data samples to the target model and collected
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the corresponding outputs. Using these outputs, they created a system of equations that

described the relationship between the inputs and the model parameters. By solving these

equations, they could recover the values of the model’s parameters. Although this attack

is more efficient than Lowd and Meek’s method, it still requires knowledge of the target

model’s architecture and access to data samples for querying. Later, (Reith, Schneider,

and Tkachenko 2019) extended this approach to extract parameters from Support Vector

Regression (SVR) models with linear or quadratic kernels.

The attacks discussed so far can be classified as equation-solving attacks. Another

attack approach, a retraining attack, is first proposed by (Tramèr et al. 2016). In this type of

attack, input-output pairs (𝑥, 𝑓𝑇 (𝑥)) are obtained by repeatedly querying the target model,

allowing them to train a local substitute model that approximates the target model’s decision

boundary. Retraining attack is the predominant strategy for model extraction. Unlike

equation-solving, retraining does not rely on confidence scores, making it applicable

to a broader range of models, including those that only return class labels. Tramèr’s

method remains a foundational technique for subsequent model extraction attack (MEA)

research, particularly in black-box settings where the target model’s internal parameters

are inaccessible.

The source of queries plays a key role in model extraction attacks. Samples close

to the target model’s decision boundary provide more valuable information, making them

critical for extracting the model effectively. To achieve this, adversaries aim to identify or

generate informative samples while minimizing the number of queries needed. Adversaries

have two main strategies to generate these queries. One option is to use publicly available

surrogate datasets, which are natural datasets containing data types similar to those of the

target model’s training set. The other approach is to create synthetic queries specifically

designed to probe the target model. Both methods come with their own advantages and

challenges. For example, surrogate datasets can save time, but may not be perfectly aligned

with the target model’s distribution. On the other hand, synthetic queries can be tailored to

the task, but may require significant computational effort and an increased query budget.

In the following subsections, we examine the studies proposed in the literature regarding

natural dataset sampling and synthetic query generation in detail.
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2.2.1. Synthetic Query Generation

Many existing model extraction attacks assume that the adversary has access

to a surrogate dataset, which mirrors the private data used to train the target model.

However, this assumption limits the application of these techniques, especially for valuable

models trained on rare or difficult-to-access datasets. To overcome this, data-free MEAs

assume that attackers lack access to private datasets and instead train generative models to

produce synthetic samples for querying. (Kariyappa, Prakash, and Qureshi 2021) were the

first to propose this approach, using a Generative Adversarial Network (GAN) to create

samples. Since black-box attacks do not allow direct access to gradients, they employed

zeroth-order gradient approximation methods to estimate directional derivatives, which,

although effective, significantly increased the query budget. Similarly, (Truong et al. 2021)

enhanced this approach by replacing KL-divergence loss with L 1 -norm loss, which

helped avoid the vanishing gradient problem and ensured the substitute model closely

mimicked the target model’s outputs, although this still required a high number of queries.

To mitigate this issue, (Miura, Shibahara, and Yanai 2024) introduced a gradient-based

explanation technique called Vanilla Gradient. By analyzing the effect of each pixel on the

target model’s confidence scores, they reduced the reliance on gradient approximations.

Although this streamlined approach showed similar results to earlier methods, it did not

significantly decrease the required queries.

(Gong et al. 2021) explored a different strategy by applying model inversion

techniques to MEAs. They viewed the process as an encoder-decoder problem, where

the target model’s predictions were treated as encoded vectors that could be inverted to

generate representative samples. By selecting high-confidence samples using a core-set

algorithm, they effectively reduced the query budget and achieved high accuracy and

fidelity in the substitute model. Moreover, this approach generated queries that mimicked

normal data distributions, making it difficult for defense mechanisms like PRADA (Juuti

et al. 2019) to detect the attack. Another notable contribution came from (Papernot et

al. 2017), who introduced Jacobian-based dataset enhancement (JBDA). They began with

a small set of initial samples labeled by the target model and iteratively generated synthetic

samples by modifying inputs based on the Jacobian matrix’s directional variations. This

approach ensured efficient augmentation without exponential query growth and allowed the
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substitute model to craft adversarial samples transferable to the target model, amplifying

the attack’s impact.

As a conclusion, these efforts highlight the diverse methods used to improve MEAs.

While synthetic data generation has made it possible to mount effective attacks even in

constrained scenarios, challenges such as query efficiency, computational costs, and model

fidelity remain drawbacks of this approach.

2.2.2. Natural Query Sampling

Three methods are commonly used to select the best query samples: active learning,

reinforcement learning, and random selection.

The simplest query sampling approach among the natural datasets is to simply

select samples uniformly at random. Shi et al. (Shi, Sagduyu, and Grushin 2017) mounted

an MEA on naive Bayes, Support Vector Machine (SVM), and Deep Neural Network

(DNN) models in the text classification domain by randomly selecting the queries among

private datasets. Likewise, (Tramèr et al. 2016) and (Orekondy, Schiele, and Fritz 2019)

also used random uniform sampling to evaluate their studies.

Among the sampling techniques, active learning is the most extensively studied.

Chandrasekaran et al. (Chandrasekaran et al. 2020) demonstrated the application of two

active learning methods, namely probably approximately correct (PAC) and query synthe-

sis (QS), for stealing models such as Decision Trees (DTs), Random Forests (RFs), Linear

Binary Models (LBMs), and Support Vector Machines (SVMs). They also used the ex-

tended adaptive training (EAT) approach to sharply decrease the query budget (5x-224x)

compared to (Tramèr et al. 2016) for kernel support vector machines. One way to sample

queries is to first select an initial subset randomly and label this set by querying 𝑓𝑇 . Later,

train an initial substitute model, 𝑓𝑆, on these labeled data, which can be exploited to sample

queries using an active learning approach. Tramèr et al. (Tramèr et al. 2016) proposed an

adaptive retraining approach driven by active learning that selects samples that 𝑓𝑆 is least

certain about. Similarly, Pal et al. (Pal et al. 2020) investigated active learning techniques,

including uncertainty sampling, K-center, and DeepFool-based Active Learning (DFAL),

to pinpoint the most informative samples, which were then utilized in their ”Activethief”

attack.
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(Orekondy, Schiele, and Fritz 2019) were the first to apply reinforcement learning

to select optimal samples in their study, called the Knockoff attack. In this method,

a learning policy is updated at each sampling time according to a predefined reward

function.

Alternatively, the adversary may only query a subset of the surrogate dataset and use

semi-supervised learning to exploit the remaining unlabeled part. Jagielski et al. (Jagielski

et al. 2020) exploited two semi-supervised learning methods for accuracy extraction;

rotation loss and MixMatch. They showed that only querying 4000 samples and using

the semi-supervised approach on the remaining unlabeled data improve upon labeling the

whole dataset when the dataset size is small enough. Consequently, Table 2.2 summarizes

various studies focusing on sampling queries from natural surrogate datasets, specifically

within the image domain.

Table 2.2. Model Extraction Attack Literature Which Uses Natural Dataset While Con-
ducting Attack. Model abbreviations; LR: Logistic Regression, MLR: Multilayer Per-
ceptron, CNN: Convolutional Neural Network, DNN: Deep Neural Network, k-SVM:
Kernel-Support Vector Machine, DT: Decision Tree, NB: Naive Bayes.

Reference Target
Model

Surrogate
Dataset

Private
Dataset

Query
Budget

Tramer et al. LR/MLR/NN
k-SVM/DT

Digits
German Credit

Adult
Steak Survey

Digits
German Credit

Adult
Steak Survey

650
1150
1485
4013

Chandrasekaran et al. k-SVM/DT

Breast Cancer
Adult

Mushroom
Diabetes

Breast Cancer
Adult

Mushroom
Diabetes

119
48

1001
166

Orekondy et al. CNN ILSVRC
OpenImages

Caltech
CUBS200

Indoor
Diabetic

60k

Pal et al. CNN ILSVRC
MNIST
Cifar10
GTSRB

30k

Jagielski et al. CNN
ImageNet
Cifar10
SVHN

Social Media
Cifar10
SVHN

4k
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CHAPTER 3

SEMI-SUPERVISED MODEL EXTRACTION ATTACK

Self-supervised learning (SSL) has widespread adoption for its ability to reduce

the need for labeled data by utilizing pseudo-labels to learn representations applicable to

downstream tasks. Contrastive learning (CL) is a discriminative method that focuses on

grouping similar samples together and pushing different samples apart by using a simi-

larity metric to determine how close two embeddings are. By combining contrastive and

self-supervised learning, a strong framework is produced that allows models to acquire

meaningful and transferable representations from unlabeled data, which makes them ex-

tremely useful for a range of applications. Several contrastive self-supervised learning

models, including SimCLR (Chen et al. 2020), SwAV (Caron et al. 2020), BYOL (Grill

et al. 2020), MoCo (He et al. 2020), have been proposed over the years. Each of these

models offers unique methods for learning representations from unlabeled data (Bastanlar

and Orhan 2022). Among them, the SimCLR model is widely adopted in the literature

for its reliability, high accuracy, and robust performance. Additionally, it provides access

to numerous pre-trained models on various datasets. Therefore, the SimCLR model was

selected for the application in this thesis.

In the SimCLR framework, the model learns to recognize two different views of

the same image as similar while distinguishing them from views of other images. This

framework heavily depends on random augmentations, such as cropping, flipping, and

color changes, to each image while generating the views of the images. Once the image

views are obtained, they are fed into a neural network, such as a ResNet encoder, which

produces representations. These representations are projected into a latent space, and the

model is trained to make similar images close to each other and different images far apart

in this space. The model learns meaningful representations of the unlabeled data through

this training process, which can later be fine-tuned for specific tasks like classification,

object detection, or segmentation.

Semi-supervised training is one of the learning techniques that successfully benefits

the utilization of a large amount of unlabeled data and a small amount of labeled data in

the training process. This method aims to exploit supervised and unsupervised learning,
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enabling the labeled data to provide the model with explicit direction while the unlabeled

data helps to reveal more general patterns and representations in the domain. Therefore,

semi-supervised learning is an efficient and practical approach for scenarios where labeled

data is costly to acquire or insufficient within the domain, while unlabeled data is readily

available and easily accessible.

In this thesis, we processed the unlabeled data using the general representations

that the self-supervised model had learned and then mapped these representations to labels

using the transfer dataset. In other words, the labeled transfer dataset produced from the

outputs of the target model is used to fine-tune the self-supervised model, which is first

trained on unlabeled data to learn general representations. The fine-tuning procedure of

a SimCLR model is given in Figure 3.1. Consequently, this approach is classified as

semi-supervised learning, as it combines a large volume of unlabeled data with a small

amount of labeled data. However, since the labeled and unlabeled data originated from

the same dataset, it cannot be categorized as transfer learning.

Resnet50 Projection
Head

Unlabeled
Data

Representations

Self-supervised SimCLR Training

Resnet50Labeled
Dataset

Classification
Results

Supervised Finetuning

MLP
Layers

Weight Initialization

Figure 3.1. Fine-tuning Procedure of Self-supervised SimCLR Model
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3.1. Methodology

This study introduces a novel technique for extracting a black-box machine learning

model using self-supervised contrastive learning with a low query budget. The approach

is divided into six primary stages, each contributing to maximizing the success of model

extraction within given query limitations.

To perform the proposed model extraction attack, the adversary first acquires a

large number of unlabeled samples from the same problem domain as the target model.

This dataset is utilized to train a self-supervised model, as illustrated in Step A of Figure

3.2. In this step, the SimCLR framework has been utilized as the self-supervised model

for the reasons explained in detail above. The self-supervised model trained and obtained

after this step will later be used in the subsequent stages to analyze the image similarities

and to support the development of the substitute model.

In the second stage, the adversary uses active learning techniques to wisely select

a small subset from the larger unlabeled dataset. The graph cut function, a submodularity-

based method (Iyer et al. 2021), is employed in active learning for its effectiveness in

selecting informative samples from the unlabeled dataset. Next, the obtained subset is

labeled by submitting repeated queries to the target model, resulting in the creation of

what we call the “transfer dataset.” This process refers to step B in Figure 3.2. Once the

transfer dataset is created, a linear evaluation is conducted to approximate the target model:

a 3-layer multi-layer perception (MLP) model is placed on top of the SimCLR encoder,

followed by fine-tuning the complete network using the transfer dataset in a supervised

manner. This process, depicted in Step C of Figure 3.2, produces the ”semi-supervised

baseline model.”

The accuracy of the obtained substitute baseline model is found to be lower than

that of the target model. This is due to the limited amount of data in the transfer dataset,

which arises from the query budget constraints. To address this issue, we aim to enlarge the

labeled dataset utilized during the fine-tuning process in Step C. Therefore, we introduce

two pseudo-labeling processes, which are shown in Steps D and E in Figure 3.2, confidence-

based and similarity-based pseudo-labeling, respectively. Confidence-based sampling

relied on labeling the sample according to the output generated by the semi-supervised

baseline model. The class labels corresponding to output confidence scores that exceed a
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specified threshold are considered the pseudo-labels for the respective samples. In other

words, since the labeling model has already been trained on the same unlabeled data

in a self-supervised way, the low-entropy samples on which the model is confident are

considered appropriate for direct labeling. These low-entropy samples are trustworthy

candidates for pseudo-label assignment without the need for extra processing since they

reflect data points for which the model has high certainty. Eventually, the confidence-

based pseudo-labeling approach, shown in Step D of Figure 3.2, ensures that only reliable

predictions are included in the expanded dataset, maintaining the quality of the labeled

data. The dataset generated after this step is referred to as the ”pseudo-labeled transfer

dataset.” Using only the examples that the semi-supervised substitute model is confident

about can reduce the diversity in the pseudo-labeled dataset. To tackle this, we used

the similarity-based pseudo-labeling approach to include samples with confidence scores

below the threshold in the pseudo-labeled transfer dataset. Accordingly, using the self-

supervised model’s encoder, representations of low-confidence samples are extracted and

compared to those in the pseudo-labeled transfer dataset using a distance metric. Cosine-

similarity is used to determine the distance between the representations of the images.

The concept of cosine similarity is based on the idea that in a given feature space, similar

vectors will be positioned closer to each other, whereas dissimilar vectors will be located

farther apart. Based on this, each low-confidence sample is assigned the label of its most

similar counterpart in this labeled dataset. This technique enriches the dataset by including

diverse and challenging examples, improving the final substitute model’s generalization

capabilities. An illustration of similarity-based pseudo-labeling can be found in Step E.

By the end of this step, all samples in the unlabeled dataset are assigned pseudo-labels,

resulting in a final transfer dataset.

Finally, the adversary uses the expanded labeled dataset, which includes high-

confidence pseudo-labeled samples and similarity-based pseudo-labeled samples, to train

the final substitute model. As shown in Step F of Figure 3.2, the self-supervised encoder is

further fine-tuned, and an additional multi-layer perceptron (MLP) is attached to complete

the model architecture. This final training phase leverages the enriched dataset to produce

a substitute model that closely replicates the performance and behavior of the target model.

By combining self-supervised learning, active learning, and pseudo-labeling techniques,

this approach effectively reduces the query budget while achieving high accuracy in
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the extracted substitute model, addressing key limitations of existing model extraction

methods.

An important feature of this method is the intentional labeling of low-confidence

samples (those below the predefined threshold) to increase dataset diversity. Although

high-confidence predictions typically come from images the model has ’memorized’, low-

confidence samples represent unfamiliar data, introducing greater diversity. Integrating

confidence-based and similarity-based labeling produces a more varied labeled dataset,

which enables the substitute model to generalize beyond familiar patterns.

3.2. Experimental Results

This section presents the experimental results of the proposed methodology. How-

ever, it is important to note the following details in advance. The experiments in this

section were conducted using the CIFAR-10 dataset (Krizhevsky, Hinton, et al. 2009) and

the SVHN dataset (Netzer et al. 2011). The CIFAR-10 dataset consists of color images

with a resolution of 32x32 pixels, divided into 10 classes, such as airplanes, cars, and

animals, with 50,000 training samples and 10,000 test samples. Similarly, the SVHN

dataset contains images of house numbers captured from real-world street views, also

with a resolution of 32x32 pixels. It is divided into 10 classes representing the digits

0 through 9 and includes more than 73,000 labeled training samples, 26,000 test sam-

ples, and 531,131 additional samples. These datasets provide diverse and well-known

benchmarks for evaluating image classification models.

Similar to existing studies in the literature, this thesis assumes that the adversary

can access data from the same problem domain as the target model’s private dataset. For

this purpose, the entire CIFAR-10 and SVHN datasets were used as the unlabeled surrogate

datasets. However, to prevent any overlap with the target model’s training data, queries

for the CIFAR-10 dataset were selected exclusively from its test set, while for the SVHN

dataset, the additional set was used. This setup guarantees that the queried samples are

distinct from those in the target model’s training dataset.
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Therefore, the CIFAR-10 dataset test set was split into two subsets: one for queries

and the other as a test set. Although the query dataset sizes vary from 4000, 2000, 1000,

and 250 in different experiments, the test set remains fixed at 6000 data points. The results

presented in the tables represent the accuracy of the models evaluated on this fixed test

set of 6000 samples. For the SVHN dataset, the additional dataset was utilized for query

sampling, while the entire test set was used solely for evaluating the model’s performance.

A target model with a WideResNet40x10 architecture was trained on the CIFAR-

10 train set, achieving an accuracy of 94.4%, while for the SVHN dataset, a target model

using the ResNet50 architecture was trained, achieving an accuracy of 94.90%. The

selected queries were fed as inputs to the target models, and the top-1 labels produced by

the models were collected as outputs to create the transfer datasets.

3.2.1. Baseline Semi-Supervised Model Evaluation

Table 3.1 provides the performance of the semi-supervised baseline substitute

model obtained by sequentially implementing Steps A, B, and C as illustrated in Figure

3.2. These results evaluate the models under different query budgets and training con-

figurations. Accordingly, four different query budgets (4000, 2000, 1000, and 250) were

examined, and the models were trained with three distinct encoder configurations, which

are ”all layers frozen,” ”fine-tuning,” and ”logits layer trained.” Furthermore, the effect on

model accuracy was evaluated by comparing two types of classifiers applied on top of the

encoder: a Linear Model and a Multi-Layer Perceptron (MLP) Model.

As expected, increasing the query budget leads to higher accuracy, with the best

performance achieved at the highest query budget of 4000 across all training methods. This

emphasizes the value of having a larger transfer dataset, which provides more diverse and

representative data for training the substitute model. However, lower query budgets, such

as 250, result in a noticeable drop in accuracy, highlighting the difficulty of constructing

effective substitute models with limited labeled data. This demonstrates the trade-off

between keeping query costs and detection risks low while ensuring enough data to

achieve strong performance.
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Table 3.1. Semi-supervised Baseline Substitute Models Test Accuracy Results on CIFAR-
10 Dataset for Varying Size Query Budgets

Query Budget Training Method Linear Model MLP Model
All layers frozen 87.23% 87.71%

Logits layer trained 89.10% 88.85%4000
Fine-tuning 91.01% 90.98%

All layers frozen 86.90% 86.91%
Logits layer trained 88.25% 87.96%2000

Fine-tuning 89.56% 89.71%
All layers frozen 85.70% 85.25%

Logits layer trained 86.88% 86.76%1000
Fine-tuning 88.90% 88.31%

All layers frozen 82.13% 81.15%
Logits layer trained 84.33% 82.50%250

Fine-tuning 84.95% 83.65%

When examining training methods, fine-tuning consistently achieves the best re-

sults across all query budgets for both linear and MLP models. This shows that fully

updating the model’s parameters allows it to adapt better to the transfer dataset, leading

to improved accuracy. In contrast, training only the logits layer results in slightly lower

accuracy, though it still performs better than freezing all layers, which consistently pro-

duces the lowest accuracy. These results underline the limitations of training methods

that restrict parameter updates, as they prevent the model from fully utilizing the transfer

dataset. Although fine-tuning is more computationally demanding, it provides the most

noticeable improvements, particularly when the query budget is sufficient.

When comparing the linear and MLP models, the linear model consistently out-

performs the MLP model across most query budgets and training methods, as seen in the

table. For example, with a query budget of 4000, the linear model achieves an accuracy of

91. 01% with fine-tuning, slightly higher than the MLP model’s 90.98%. A similar trend is

observed with lower query budgets, such as 250, where the linear model achieves 84.95%

with fine-tuning, compared to 83.65% for the MLP model. This trend can be attributed to

several factors. First, the simplicity of the linear model reduces the risk of overfitting, espe-

cially when the transfer dataset is limited in size due to query budget constraints. Second,

the linear model aligns better with the feature space generated during the self-supervised

pretraining phase, effectively leveraging the representations without adding unnecessary
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complexity. In contrast, the MLP model, with its additional layers, may overfit the limited

data or distort the pre-trained features. Lastly, the linear model requires fewer parameters

to train, making it less sensitive to hyperparameter tuning and more stable during training.

These factors combined make the linear model a robust and efficient choice, particularly

in scenarios with restricted query budgets, while still maintaining competitive accuracy

even when compared to the more complex MLP architecture.

Considering the different query budgets presented in the table, the encoder+linear

model fine-tuned with the transfer dataset obtained from 4000 queries achieves the highest

accuracy. This indicates that a target model with an accuracy of 94.40% can be effectively

replicated with a substitute model that achieves 91.01% accuracy. The relative difference

between the two models in accuracy is 3.39%.

3.2.2. Performance Analysis of Proposed Method on Problem Domain
Query Data

In this section, we analyze the performance of the proposed method in the problem

domain by evaluating the impact of different query budgets on substitute model accuracy.

The selection of query data differs based on the dataset: for the CIFAR-10 domain, queries

are sampled from the test dataset, ensuring that the queried samples are distinct from those

in the training set of the target model. In contrast, for the SVHN dataset, the additional

dataset is used as the source of queries, also ensuring that the queried samples are distinct

from those in the training set of the target model. This deliberate choice guarantees that

the extracted substitute model does not rely on data points that were originally used to

train the target model, preserving the integrity of the black-box attack scenario.

Analyzing the data presented in Table 3.2, we observe that the fully supervised

method struggles significantly at lower query budgets, with a substitute model accuracy of

only 48.78% at 250 queries. This substantial drop in accuracy demonstrates the challenge

of training a high-quality model when limited labeled data is available. Conversely, the

baseline and proposed methods consistently outperform the fully supervised approach. The

baseline method achieves 91.01% accuracy at 4000 queries, with an absolute difference of

3.39% compared to the target model. Meanwhile, the proposed method further improves

upon this result, reaching 91.93% accuracy at 4000 queries with an absolute difference of

only 2.47%.
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Table 3.2. Experimental Results on CIFAR-10 Dataset

Method Query
Budget

Substitute
Model
Test

Accuracy

Target
Model
Test

Accuracy

Absolute Diff.
Between

Target and
Substitute

Models

Relative Diff.
Between

Target and
Substitute

Models

Fully-supervised

4000 83.93% 94.40% 10.47% 88.91%
2000 73.13% 94.40% 21.27% 77.47%
1000 68.99% 94.40% 25.41% 73.08%
250 48.78% 94.40% 45.62% 51.67%

Baseline Method

4000 91.01% 94.40% 3.39% 96.04%
2000 89.56% 94.40% 4.84% 95.03%
1000 88.90% 94.40% 5.50% 93.55%
250 84.95% 94.40% 9.45% 86.37%

Proposed Method

4000 91.93% 94.40% 2.47% 97.38%
2000 90.86% 94.40% 3.54% 96.25%
1000 90.35% 94.40% 4.05% 95.71%
250 86.00% 94.40% 8.40% 91.10%

Similarly, when the proposed method is applied to a different dataset, such as

SVHN, it continues to demonstrate superior performance compared to the fully supervised

and baseline methods. As seen in Table 3.3, the proposed method achieves 90.27%

accuracy at 4000 queries, outperforming the fully supervised method, which reaches

only 84.00%. This trend is consistent across different query budgets, with the proposed

method maintaining higher accuracy at 2000 queries (82.08%) and 1000 queries (80.29%),

while the fully supervised method lags behind at 78.59% and 70.87%, respectively. This

underscores the effectiveness of leveraging self-supervised learning and pseudo-labeling

techniques to extract high-quality substitute models even in scenarios where labeled data

is scarce.

As the query budget decreases, the proposed method continues to outperform the

baseline method. At 1000 queries, it achieves 80.29% accuracy compared to the baseline

method’s 74.80%, reflecting a significant advantage. This performance gap highlights the

benefits of integrating confidence-based and similarity-based pseudo-labeling to enhance

dataset diversity and improve model generalization. The relative difference between

the target and substitute models remains consistently higher for the proposed method,

demonstrating its robustness in handling lower query budgets without a drastic drop in

performance.
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Table 3.3. Experimental Results on SVHN Dataset

Method Query
Budget

Substitute
Model
Test
Accuracy

Target
Model
Test
Accuracy

Absolute Diff.
Between
Target and
Substitute
Models

Relative Diff.
Between
Target and
Substitute
Models

Fully-supervised
4000 84.00% 94.90% 10.90% 88.51%
2000 78.59% 94.90% 16.31% 82.81%
1000 70.87% 94.90% 24.03% 74.68%

Baseline Method
4000 87.12% 94.90% 7.78% 91.80%
2000 76.09% 94.90% 18.81% 80.18%
1000 74.80% 94.90% 20.10% 78.82%

Proposed Method
4000 90.27% 94.90% 4.63% 95.12%
2000 82.08% 94.90% 12.82% 86.49%
1000 80.29% 94.90% 14.61% 84.60%

This improvement is attributed to the combination of confidence-based and similarity-

based pseudo-labeling, which allows the model to leverage additional unlabeled data ef-

fectively. While high-confidence pseudo-labeling ensures reliable labels, similarity-based

pseudo-labeling enhances dataset diversity by assigning labels to uncertain samples based

on feature similarity. This process enables the substitute model to generalize better and

achieve higher accuracy even with a reduced query budget.

The experimental analysis highlights the efficiency of the proposed method in

performing model extraction with a constrained query budget. The use of self-supervised

learning in conjunction with pseudo-labeling techniques enables the extracted substi-

tute model to closely approximate the target model’s performance, even under resource-

constrained conditions. The method demonstrates superior performance compared to

fully supervised approaches and achieves competitive results against benchmark semi-

supervised techniques, particularly in low-query settings. These findings validate the

effectiveness of the proposed framework in real-world model extraction attack scenarios.

3.2.3. Benchmark Comparison and Performance Analysis of Proposed
Method on Private Dataset Query Data

Table 3.4 offers a comprehensive comparison between the method proposed in

this thesis and the approach introduced by Jagieslkiet al. (Jagielski et al. 2020), which
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employs the MixMatch semi-supervised learning method (Berthelot et al. 2019) for model

extraction. The comparison assesses the attack efficiencies regarding the absolute and

relative differences between target and substitute models, focusing on performance across

varying query budgets (4000, 1000, and 250).

To ensure a fair comparison with the benchmark approach, we followed the same

setup by selecting query data from the CIFAR-10 training dataset, aligning with the

methodology used in the benchmark paper. Unlike our previous experiments, where

query samples were chosen from the test dataset to ensure they were distinct from the

training data of the target model, in this comparison, the query dataset is drawn directly

from the training set of the target model. This setup enables a direct evaluation under

identical conditions, allowing a more accurate assessment of performance differences

between the two approaches.

Table 3.4. Classification Test Results of Benchmark Semi-Supervised Learning Ap-
proaches and Proposed Method Across Different Query Budgets on CIFAR-10 Dataset

Method Query
Budget

Substitute
Model
Test

Accuracy

Target
Model
Test

Accuracy

Absolute Diff.
Between

Target and
Substitute

Models

Relative Diff.
Between

Target and
Substitute

Models

(Jagielski et al. 2020)
4000 93.29% 95.75% 2.46% 97.43%
1000 90.63% 95.75% 5.12% 94.65%
250 87.98% 95.75% 7.77% 91.89%

Proposed Method

4000 92.50% 94.40% 1.90% 97.99%
2000 91.33% 94.40% 3.07% 96.75%
1000 90.36% 94.40% 4.04% 95.72%
250 87.68% 94.40% 6.72% 92.88%

The results in Table 3.4 indicate that MixMatch appears to achieve higher accuracy

with a query budget of 4000 due to its target model having a higher test accuracy rather

than an inherently superior extraction performance. In reality, the proposed method

surpasses MixMatch across all query budgets when considering absolute and relative

differences. At 4000 queries, the proposed method achieves an absolute difference of

1.90% compared to MixMatch’s 2.46%, already demonstrating better efficiency. As the

query budget decreases, MixMatch’s performance deteriorates more significantly, with an

absolute difference of 7.77% at 250 queries, while the proposed method maintains a lower
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absolute difference of 6.72%. This consistent trend confirms that the proposed method

outperforms MixMatch across all settings, achieving better substitute model accuracy

while being more robust to reductions in query budgets.

These findings highlight that while MixMatch benefits from a larger query budget,

its reliance on a WideResNet28-2 architecture with 1.5M parameters leads to declining

performance under constrained query budgets. Conversely, the proposed method not only

remains competitive, but also outperforms MixMatch when fewer queries are available,

reinforcing its superiority in resource-constrained scenarios and proving its effectiveness

in real-world model extraction attacks.

In conclusion, the proposed method demonstrates superior accuracy, robustness,

and efficiency compared to MixMatch. Its ability to maintain high performance across

varying query budgets, particularly in limited query budget scenarios, makes it a practical

and effective alternative for semi-supervised learning applications.

3.3. Ablation Study

The ablation study section evaluates the performance and impact of various com-

ponents of our methodology. Specifically, it explores the integration of pseudo-labeling

techniques, utilizing both confidence-based and similarity-based approaches. In addition,

the influence of the threshold value on the confidence-based method is thoroughly in-

vestigated. By systematically removing or modifying individual components, we assess

their importance in improving the performance of the substitute model. All ablation

experiments are conducted on the CIFAR-10 dataset to ensure a controlled evaluation

environment and maintain consistency across comparisons. Additionally, all the results

are given for a 4000 query budget. The ablation study also includes a detailed analysis of

the time required to execute the model extraction attack, excluding the development phase.

3.3.1. Effect of Pseudo-Labeling Strategies

This section examines the impact of different pseudo-labeling strategies and pro-

vides justification for utilizing both confidence-based and similarity-based approaches

rather than relying solely on one. By analyzing their individual contributions, we

demonstrate that confidence-based pseudo-labeling ensures high-precision labels, while
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similarity-based pseudo-labeling enhances dataset diversity, and their combined applica-

tion leads to a more balanced and effective training set for the substitute model.

3.3.1.1 Pseudo-Label by Confidence

In this experiment, we analyze the effect of pseudo-labeling the entire 50,000

unlabeled samples using the baseline substitute model without applying any confidence

filtering. When all samples are labeled in this manner, the total dataset achieves an overall

pseudo-label accuracy of 92.88%, meaning that a portion of the dataset still contains

incorrect labels. Training a new model on this fully pseudo-labeled dataset results in a

final test accuracy of 91.18%, which is lower than the baseline substitute model trained

with a more selective pseudo-labeling strategy. This indicates that while having a larger

dataset contributes to model generalization, the presence of incorrect labels limits the

potential accuracy improvements.

Given this observation, an effective strategy would be to increase the accuracy of the

pseudo-labeled dataset by filtering samples based on the baseline substitute model’s con-

fidence scores. Rather than labeling all 50,000 samples, applying a threshold-based selec-

tion method—where only samples with high-confidence predictions are included—could

significantly reduce label noise while maintaining a sufficient dataset size for training.

By prioritizing high-confidence outputs, the dataset’s accuracy can be improved beyond

92.88%, leading to a cleaner training signal for the substitute model. This suggests that

incorporating confidence-based filtering is a more effective approach than blindly labeling

all available data, as it enables better trade-offs between dataset size and label quality,

ultimately leading to improved substitute model accuracy.

3.3.1.2 Pseudo-Label by Similarity

In similarity measurement, a cosine similarity value of 1 indicates that two feature

vectors are perfectly aligned, meaning they are identical in direction. This measure helps

evaluate how similar two images are in feature space. Accordingly, we identify the most

similar unlabeled images for each labeled image in the transfer dataset by comparing their

similarity values. We select the top N most similar images from the pool of unlabeled

images that demonstrate a similarity score above the defined threshold to the transfer

dataset samples. These selected images are then included in the pseudo-labeled dataset,
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ensuring that only the most relevant samples are utilized for labeling.

In this experiment, all 50,000 unlabeled samples were assigned pseudo-labels based

on their cosine similarity to samples in the transfer dataset. Feature representations were

extracted using the baseline substitute model, and each unlabeled sample was assigned

the label of the most similar instance from the transfer dataset. The overall accuracy of

this pseudo-labeled dataset was measured at 89%, which is notably lower than the 92.88%

accuracy achieved using confidence-based pseudo-labeling. This decline suggests that

similarity-based labeling introduces more errors, likely due to the limitations of relying

purely on feature-space distance for label assignment. While cosine similarity is effective

in grouping visually and semantically related samples, it does not guarantee that the nearest

neighbor in the feature space shares the same class, especially in cases where the model’s

learned representations do not perfectly separate pneumonia and normal cases.

One primary reason for the reduced pseudo-label accuracy is the lack of class

separability in the feature space, particularly for borderline cases. If the baseline substitute

model has not learned fully discriminative representations, visually similar samples from

different classes may still be assigned incorrect labels. Additionally, as cosine similarity

only considers distance within the feature space and does not factor in the confidence of the

model’s prediction, samples with ambiguous or noisy embeddings may receive incorrect

labels, further reducing accuracy. Compared to confidence-based pseudo-labeling, which

directly leverages the model’s prediction probability, similarity-based labeling is more

prone to errors when feature representations are not highly distinct between classes. This

suggests that while similarity-based pseudo-labeling is valuable for expanding the dataset,

applying additional filtering, such as thresholding on similarity scores, could help improve

label quality and overall model performance

3.3.2. Impact of Threshold Values on Pseudo-Labeling Strategies

The threshold values used in pseudo-labeling strategies play a crucial role in

determining the trade-off between dataset size and label accuracy. Higher thresholds

ensure that only high-confidence samples are included, reducing label noise, while lower

thresholds increase the number of pseudo-labeled samples but introduce a greater risk of

incorrect annotations. In this section, we investigate the impact of threshold values on
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pseudo-labeling strategies and their effect on dataset quality and model performance. By

adjusting the threshold, we analyze how different selection criteria influence the trade-

off between dataset size and label accuracy, ultimately shaping the effectiveness of the

proposed method.

3.3.2.1 Impact of Threshold Values on Confidence-Based Pseudo-Labeling

In this section, we analyze the dataset accuracy and, consequently, the accuracy of

the substitute model trained on this dataset for different threshold values. Table 3.5 presents

the results of confidence-based pseudo-labeling for a query budget of 4000 samples, where

the unlabeled dataset is labeled using the baseline self-supervised substitute model. In this

approach, only predictions with confidence scores above a specified threshold are assigned

as pseudo-labels to the corresponding inputs. The table illustrates how varying confidence

thresholds affect the size and accuracy of the pseudo-labeled dataset, as well as the test

accuracy of a new substitute model trained on the generated dataset. The experimental

results presented in Table 3.4 were obtained using a threshold value of 0.98.

Table 3.5. Accuracy of the Confidence-based Pseudo-labeled Dataset Generated Using
the Baseline Self-Supervised Substitute Model and Test Accuracy of the Substitute Model
Trained on the Confidence-based Pseudo-labeled Dataset. This table represents the results
obtained by following the sequential process outlined in Steps A-B-C-D as illustrated in
Figure 3.2.

Confidence
Threshold Data Size Dataset

Accuracy

Substitute
Model
Accuracy

0.98 44328 98.34% 91.48%
0.95 46612 97.74% 91.21%
0.9 48270 97.01% 91.30%
0.8 50007 96.14% 91.06%
0.7 51217 95.36% 91.18%
0.6 52215 94.57% 91.53%
0 54000 92.82% 91.18%

Table 3.5 presents the relationship between confidence threshold, dataset size,

dataset accuracy (true label accuracy), and substitute model accuracy. As the confidence
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threshold decreases from 0.98 to 0, the dataset size steadily increases from 44,328 to

54,000. This is expected because lower confidence thresholds allow more samples to be

pseudo-labeled, thereby increasing the overall dataset size. However, this comes at the cost

of dataset accuracy—i.e., the proportion of correctly pseudo-labeled samples decreases.

For instance, at a 0.98 confidence threshold, the dataset accuracy is 98.34%, whereas at

0, it drops to 92.82%. This decline indicates that including more pseudo-labeled samples

leads to a higher likelihood of incorrect labels contaminating the dataset.

Despite the decreasing dataset accuracy, the substitute model accuracy remains

relatively stable, ranging between 91.06% and 91.53%, with minimal fluctuations. This

suggests that as the dataset grows, the model compensates for the lower label accuracy by

leveraging the increased diversity of training samples. Notably, even at the lowest threshold

where dataset accuracy drops significantly, the substitute model maintains competitive

performance. This indicates that the model is robust to some degree of label noise, likely

benefiting from the larger training set, which enables it to generalize better despite the

presence of incorrect labels.

The stability of the substitute model’s performance can be attributed to several

factors. First, lowering the confidence threshold introduces noise into the pseudo-labeled

dataset, as predictions with lower confidence are more likely to be incorrect. This noise

reduces the model’s ability to learn precise decision boundaries, limiting its performance.

Second, inputs with high confidence scores are often the ones the baseline self-supervised

model has effectively memorized. For example, inputs with high confidence scores often

come from certain classes that the baseline self-supervised model has memorized. This

can cause an uneven distribution in the pseudo-labeled dataset, where some classes are

overrepresented and others are underrepresented. As a result, the dataset lacks diversity,

making it harder for the substitute model to learn about all classes equally. This imbalance

limits the model’s ability to improve and helps explain why its performance stays the same.

In conclusion, for a 4000 query budget, confidence-based pseudo-labeling effectively

leverages the baseline model to generate labeled data, but its performance is constrained

by the trade-off between dataset size and label quality.

Figure 3.3 illustrates the relationship between the confidence threshold, dataset

size, and dataset accuracy across different query budgets. Consistent with the Table 3.5,

Figure 3.3 shows a clear inverse relationship between confidence threshold and dataset
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size—lowering the threshold increases the dataset size, as more samples are accepted

into the pseudo-labeled dataset. However, this comes at the cost of dataset accuracy,

as indicated by the downward trend in accuracy across all query budgets. At higher

confidence thresholds (e.g., 0.98, 0.95), the dataset remains smaller but maintains high

accuracy. As the threshold decreases (e.g., 0.80, 0.70, 0.60), dataset size increases, but

accuracy declines more steeply, aligning with the previous observation that incorporating

more samples introduces more incorrectly labeled data.
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Figure 3.3. Effect of Confidence Threshold on Dataset Size and Dataset Accuracy Across
Varying Query Budgets.

3.3.2.2 Impact of Threshold Values on Similarity-Based Pseudo-Labeling

Table 3.6 presents the results of a cosine similarity-based pseudo-labeling ap-

proach, where labels are assigned to an unlabeled dataset based on feature similarity. Fea-

tures for both the labeled and unlabeled datasets are extracted using the semi-supervised

baseline substitute model, and cosine similarity is used to find the closest matches between

data points. For each unlabeled sample, the label of the most similar sample(s) from the
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labeled dataset is assigned. The similarity threshold determines how strict the matching

process is, directly impacting the size and quality of the pseudo-labeled dataset.

The table presents the effect of threshold values and the number of sampling

iterations on dataset accuracy and dataset size in similarity-based pseudo-labeling. The

results indicate that increasing the similarity threshold leads to higher dataset accuracy but

significantly reduces the number of pseudo-labeled samples available for training. This

trade-off is crucial in determining the effectiveness of pseudo-labeling, as an extremely

high threshold ensures only the most confidently labeled samples are included, but at the

cost of a drastically reduced dataset size.

For instance, at a threshold of 0.8, the dataset accuracy consistently remains above

99.7%, demonstrating that selecting only highly similar samples minimizes the risk of

introducing incorrect labels. However, the dataset size decreases considerably, making

it potentially insufficient for training a robust model. In contrast, at a threshold of 0.7,

the dataset size is substantially larger, but the dataset accuracy declines slightly, though

it is still maintaining a high level. This suggests that while lower thresholds introduce

more samples, they also bring in additional label noise. The final row of the table, which

includes all pseudo-labeled data without threshold filtering, shows a dataset accuracy

of 89.01%, highlighting how including all available samples without filtering leads to a

significant drop in accuracy. This result reinforces the necessity of balancing dataset size

and accuracy, while higher thresholds improve label quality, they may not provide enough

training data, and lower thresholds, while increasing sample size, introduce label noise

that can degrade the substitute model’s performance.

These findings emphasize that a well-chosen threshold is necessary to achieve an

optimal balance between the accuracy and size of the data set. If the dataset size is too

small, the model may fail to generalize effectively, whereas a dataset with excessive label

noise could limit performance gains. Thus, the pseudo-labeling strategy must consider

both factors to ensure effective model training.

The last row of the table represents the scenario where the entire unlabeled dataset

is labeled using cosine similarity without applying any threshold. In this case, all 50,000

samples are included in the pseudo-labeled dataset, resulting in a dataset accuracy of

89.01%. This is significantly lower than the accuracies achieved with threshold-based

sampling, highlighting the importance of filtering samples based on confidence. When all
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samples are labeled regardless of similarity, including noisy and low-confidence matches

introduces substantial errors, reducing the overall quality of the dataset. To address this,

the approach adopted in this thesis involves initially performing high-accuracy pseudo-

labeling using a substitute model. Subsequently, the remaining samples are labeled based

on their cosine similarity to the transfer dataset. This combined strategy has yielded the

best results.

Table 3.6. Effect of Threshold Values and Number of Sampling on Dataset Accuracy and
Sample Selection in Similarity-Based Pseudo-labeling. The table indicates the results for
a transfer dataset size of 4000 and an unlabeled dataset size of 50,000.

Number
of
sampling

Threshold Dataset
Size

Dataset
Accuracy

1 0.7 6401 99.25%
0.8 4744 99.83%

2 0.7 8373 99.10%
0.8 5169 99.81%

3 0.7 10115 99.00%
0.8 5501 99.75%

4 0.7 11700 98.91%
0.8 5779 99.71%

5 0.7 13149 98.91%
0.8 6016 99.70%

6 0.7 14486 98.91%
0.8 6234 99.71%

7 0.7 14982 98.56%
0.8 6430 99.72%

8 0.7 16066 98.59%
0.8 6612 99.73%

9 0.7 10618 99.34%
0.8 6774 99.73%

10 0.7 11013 99.35%
0.8 6928 99.74%

All 0 50000 89.01%

The results highlight a clear trade-off between dataset size and accuracy when using

cosine similarity-based pseudo-labeling. Applying a stricter threshold produces smaller,

more accurate datasets by filtering out low-confidence matches. Conversely, including the

entire unlabeled dataset without a threshold maximizes the dataset size but significantly
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compromises accuracy due to the presence of noisy labels.

3.3.3. Time Analysis of the Model Extraction Process

This evaluation provides insights into the computational efficiency of the attack,

focusing solely on the time taken for key stages such as querying the target model, con-

structing the transfer dataset, performing pseudo-labeling, and training the final substitute

model. By breaking down each stage, the study quantifies the feasibility of executing

the attack under real-world constraints, demonstrating how an adversary with sufficient

computational resources and an unlabeled dataset can extract a high-performing substitute

model within a practical timeframe. The reported time measurements highlight the effi-

ciency of the proposed approach, emphasizing its applicability in low-query settings while

maintaining minimal computational overhead. Table 3.7 presents a detailed breakdown

of the time required for each step of the attack. The measurements were conducted on a

system equipped with an Intel Core i7 13th Generation CPU, 16GB RAM, and an NVIDIA

RTX 4080 GPU, ensuring consistent performance evaluation across experiments.

Table 3.7. Execution Time Breakdown for Each Stage of the Model Extraction Attack

Query
Budget

Transfer
Dataset,
Creation

(sec)

Substitute
Baseline
Training

(min)

Pseudolabeling
(min)

Final
Substitute

Model
Training

(min)

Total Time
(min)

4k 39.88 3.98 1.13 5.13 10.63
2k 26.02 2.41 1.17 4.63 8.47
1k 22.08 1.91 1.03 4.85 8.00

250 21.76 2.91 1.24 4.17 8.53

Table 3.7 shows that higher query budgets generally lead to faster execution, but

the 250-query budget scenario has the longest pseudo-labeling time (1.24 min) despite

fewer initial labeled samples. This occurs because more samples require similarity-based

pseudo-labeling, increasing computational time. The results highlight how reliance on

pseudo-labeling grows in low-query settings, though the overall attack remains efficient.
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CHAPTER 4

USE CASE ON CHEST X-RAY DATA

In many domains, acquiring labeled data is both expensive and challenging, as

training a model typically requires a large number of annotated samples. One such

domain is medical imaging, where expert-annotated datasets are difficult to obtain due to

the need for specialized medical knowledge and extensive manual review. This section

demonstrates that an adversary with access to a sufficiently large pool of unlabeled data

can perform a low-budget model extraction attack and obtain a high-accuracy substitute

model. By leveraging self-supervised learning and pseudo-labeling, the proposed method

effectively minimizes the reliance on labeled queries while maintaining strong model

performance, highlighting a critical vulnerability in black-box AI systems within data-

scarce environments.

To evaluate the feasibility of this approach, a pre-trained DenseNet121 model

(Densenet121-res224-nih) from the TorchXrayVision framework (Cohen et al., 2022)

was used as the target model. This model, trained on the NIH Chest X-ray dataset

(Wang et al., 2017), provides classification outputs for 18 different diseases, making it a

suitable benchmark for medical imaging applications. The primary focus of this study

was on pneumonia classification, where the target model produces probability scores for

the presence of pneumonia. Any input receiving an output score of 0.5 or higher was

classified as pneumonia-positive, aligning with standard clinical interpretation thresholds.

The query dataset was derived from Kaggle’s Chest X-Ray Images (Pneumonia)

dataset (Kermany, 2018), an open-access dataset containing 5617 chest X-ray images,

categorized into pneumonia and normal cases. These images were obtained from retro-

spective cohorts of pediatric patients aged one to five years at the Guangzhou Women and

Children’s Medical Center, and their accuracy was verified by medical experts. A total

of 600 images, equally distributed between pneumonia and normal cases, were randomly

sampled as the query dataset. The remaining 4616 images were treated as unlabeled

data, forming the foundation for the self-supervised learning and pseudo-labeling pro-

cesses, while an additional 624 samples were held out as a test set for final evaluation.

To illustrate the dataset used in this study, Figure 4.1 presents representative normal and
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pneumonia cases from Kaggle’s Chest X-Ray dataset.

To construct the transfer dataset, the 600 selected samples from Kaggle’s Chest

X-Ray Images (Pneumonia) dataset were used as queries to the DenseNet121 target model.

Each sample, consisting of 300 pneumonia and 300 normal cases, was sent to the target

model, which returned its classification outputs. These outputs, paired with their corre-

sponding input images, formed the transfer dataset, serving as the initial labeled data for

training the substitute model. This dataset plays a crucial role in the model extraction pro-

cess, as it provides a foundation for fine-tuning the self-supervised representations learned

from the unlabeled dataset. Figure 4.2 illustrates the complete workflow of this process,

detailing how the transfer dataset is derived from the query interactions and subsequently

utilized in substitute model training.

(a) Normal (b) Normal (c) Normal

(d) Pneumonia (e) Pneumonia (f) Pneumonia

Figure 4.1. Sample Images from Kaggle’s Chest X-Ray Images (Pneumonia) dataset
(Kermany 2018)

To develop a baseline substitute model, an ImageNet-pretrained SimCLR model

was fine-tuned using the transfer dataset, which was constructed from the 600 queried
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samples and their corresponding target model outputs. Since SimCLR is a self-supervised

representation learning framework, it extracts meaningful features from unlabeled data,

but to adapt it for the specific task of pneumonia classification, only the final layer was

retrained using the transfer dataset. This ensures that the learned representations remain

general while aligning the output space with the target model’s decision boundaries. The

resulting baseline substitute model achieved a test accuracy of 85.73%, demonstrating its

ability to approximate the target model’s behavior using a minimal amount of labeled data.

Figure 4.2. Process of Transfer Dataset Creation from Query Interactions

In order to enhance the model performance, pseudo-labeling algorithms were

applied to the 4616 unlabeled samples, leveraging the predictions of the baseline substitute

model. Instead of manually labeling this large dataset, pseudo-labeling assigned class

labels to each sample based on confidence thresholds and similarity-based techniques,

effectively expanding the labeled training data. The substitute model was then retrained

using this extended dataset, incorporating both the initially labeled transfer dataset and the

newly pseudo-labeled samples. This progressive refinement process enabled the model

to generalize better, ultimately resulting in an improved test accuracy of 88.78%. Figure
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4.3 provides a visual representation of this process, illustrating how the combination of

self-supervised learning, transfer dataset training, and pseudo-labeling contributes to the

development of a high-performing substitute model.

Figure 4.3. Workflow for Constructing the Final Substitute Model through Pseudo-
Labeling and Training

These findings underscore the effectiveness of the proposed method in medical

imaging applications. Despite the challenges associated with class imbalances and lim-

ited labeled data, the methodology demonstrates strong generalization capabilities. The

integration of self-supervised learning and pseudo-labeling enhances model performance

while reducing reliance on extensive labeled datasets, emphasizing the practical applica-

bility of the approach for real-world deployment.
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CHAPTER 5

THREAT MODEL

A threat model provides a structured framework for identifying vulnerabilities

within a system, understanding how various threats might exploit these weaknesses, and

determining effective strategies to mitigate or defend against potential attacks. By sys-

tematically analyzing the system’s components, threat modeling helps assess the impact

of threats and guides the development of robust security measures. It also outlines pos-

sible impacts if the model were to be replicated or reverse-engineered by an attacker.

This structured approach allows us to evaluate defenses and create strategies to protect

the model’s functionality and proprietary value. Without a clear threat model, it can be

difficult to identify the model’s potential vulnerabilities and anticipate how it might be

attacked, which leaves it more exposed to risk.

In the following subsections, we analyze the assets of the model extraction attack,

categorize potential adversaries, identify system components that may be targeted, and

examine the attack surfaces of the system. Additionally, we discuss prominent model

extraction threats and their impact on the system and the model owner and propose

effective countermeasures to mitigate these risks.

5.1. Assets

The main assets in this threat model are the target model and the private dataset

used to train it. The target model, hosted on an API, is the result of a significant investment

in time, expertise, and computational resources. It has commercial value, as companies

earn revenue by providing access to their models through APIs, often charging subscription

fees or per-query costs. The private dataset is also crucial, as it contains proprietary or

sensitive information and is often difficult to collect or replicate, especially in specialized

fields like medical imaging or finance. These assets are vital to the model owner’s business

and intellectual property.
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5.2. Adversary

We classify adversaries into two categories: insider and outsider adversaries.

Insider adversaries include the model developers or API workers, while outsider adver-

saries are the users of the API. Insider adversaries can access detailed information about

the model, enabling them to carry out white-box attacks. On the other hand, outsider

adversaries are generally weaker, which limits them to potentially launching black-box

attacks. In the following sections, we provide a detailed analysis of the adversary’s goals,

motivations, and capabilities in executing this attack.

5.2.1. Adversary’s Motivation

An adversary may have two primary objectives: obtaining a local copy of the model

or using that copy as a basis for further attacks. To bypass black-box API restrictions,

like per-query fees or daily query limits, replicating the model hosted on the API and

training a local version can be an effective approach. Another motivation could be to

transform black-box models into white-box ones, allowing for more invasive attacks, such

as evasion or poisoning. Here, the obtained local model serves as a preliminary step to

enable these white-box attacks. For example, at the simplest level, an adversarial sample

can be generated from the white-box model to mislead the target model.

5.2.2. Adversary’s Capability

Adversaries are categorized by their capabilities as either weak or strong. A strong

adversary has access to details such as the model’s architecture or private training dataset.

Model extraction attacks are typically classified into three types: white-box, grey-box, and

black-box. In a white-box attack, the adversary has complete knowledge of the model’s

training process, including its hyperparameters. In a grey-box attack, the adversary has

partial information; for example, they may know the model’s architecture but lack access

to the private dataset. Finally, in a black-box model extraction attack, the adversary only

has access to the model’s outputs, which can vary depending on the API—some APIs

provide confidence scores, while others only return the top-1 label.
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The black-box model extraction attack is the strongest scenario for this type of

attack and is particularly suited to APIs. In this scenario, the adversary and the API

interaction are only based on queries. Hence, it is called a ”query-based attack.” The

limited interaction relies on analyzing the model’s output to reconstruct or approximate

the target model’s functionality without direct access to its internal information.

5.2.3. Adversary’s Goal

An adversary can have two aims while conducting a model extraction attack:

fidelity extraction or accuracy extraction, as outlined in the study (Jagielski et al. 2020).

Fidelity extraction focuses on replicating the target model’s behavior as closely as possible.

This type of attack does not require ground-truth labeled samples, as it evaluates the

substitute model’s performance based solely on alignment with the target model’s outputs.

The substitute model’s upper accuracy bound is constrained by the target model’s accuracy

in fidelity extraction. In contrast, accuracy extraction aims to achieve outputs that align

with ground-truth labels, allowing the substitute model’s accuracy to potentially exceed

that of the target model.

The success of the attack is often measured by the number of queries, known as

the query budget, since it directly affects the attack cost, as the adversary typically pays

per query. Additionally, APIs may enforce daily query limits or flag high query volumes

as suspicious, labeling them as adversarial. Thus, reducing the query budget is a key focus

for adversaries looking to extract the model efficiently.

5.3. Trust Model

In the context of a model extraction attack, the system consists of several key actors

with distinct roles and trust levels. These actors include the user, the AI developer (model

developer), and the API service provider. The AI developer is responsible for designing,

training, and deploying the machine learning model, while the API service provider hosts

the model and manages its accessibility through the API. Users access the system via

the API and can be categorized as either benign users who use the API as intended or

adversaries who attempt to exploit the system.

This thesis considers a black-box attack scenario. In this context, the AI developer,
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API service provider, and benign users are classified as trusted actors. This is because,

in a black-box scenario, neither the API service provider nor the AI developer leaks any

internal information about the system. However, the adversary is an untrusted actor, as

their goal is to exploit the API through a model extraction attack.

5.4. Attack Surface and Attack Vectors

In model extraction attacks, the primary attack vector focuses on the queries sent

to the target model, which are tools that attackers use to explore the model’s decision-

making process and understand how it operates. Moreover, the query source is critical in

determining the attack’s success, as it controls the information extracted from the model.

Queries are generally categorized into four types: original data, problem domain

data, non-problem domain data, and artificially generated data. Original data refers to the

private dataset, and adversaries may gain access to a portion of this dataset to use it for

querying. This allows the attacker to exploit the model’s learned patterns effectively, as

the queries are well-aligned with the problem space. Alternatively, adversaries may use

datasets from the problem domain, which can reveal significant details about the model’s

behavior. For example, in a medical image classification model, adversaries might query

the model using medical image data, where the feature space remains the same, and

the marginal probability distribution is quite similar to that of the model’s training data

but not identical. This alignment helps attackers gain insights into the model’s decision

boundaries and functionality.

In some cases, an adversary may use non-problem domain data that shares the

same feature space but has a different marginal probability distribution compared to the

private dataset. In this type of query source, the modality of the private dataset and

query are the same, such as using image data for image classification models or text data

for text classification. While less efficient, such data can still provide valuable insights

into the model’s decision-making process by revealing how it responds to unfamiliar data

distributions. Lastly, adversaries might employ artificially generated data, leveraging

techniques such as generative models to create inputs specifically designed to explore

the model’s vulnerabilities or less commonly visited regions of its decision space. This

approach allows attackers to probe the model’s behavior in a controlled manner, identifying
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weaknesses that could be exploited in a more focused attack.

The effectiveness of the attack depends on the quality, diversity, and alignment of

these queries with the target model’s domain. By carefully selecting or generating query

data, adversaries can maximize the information gained from each interaction, making the

query source a fundamental parameter in the attack vector. The attack surface of a model

extraction attack is primarily defined by the API interface through which the adversary

interacts with the target model. This interface provides an entry point for submitting queries

and retrieving outputs, such as class labels or probability distributions. Adversaries exploit

the openness of this interface to systematically query the model, collecting outputs to infer

its internal structure and replicate its functionality.

Through the API interface, attackers can interact with the model without requiring

direct access to its parameters or training data. This makes it a critical vulnerability point,

particularly for publicly accessible machine learning models. The scope of the attack

surface is influenced by factors such as the level of detail in the outputs provided by the

API. For instance, returning class probabilities offers more information to an attacker than

hard labels. Additionally, unrestricted query access enables attackers to iterate through

large datasets or generate synthetic inputs to refine their understanding of the model.

5.5. Threat Impact

Protecting the target model and private dataset is crucial for maintaining the model

owner’s revenue, intellectual property, and competitive position. If the target model is

stolen, attackers can replicate its functionality without paying for API access, leading to

a loss of revenue. This also reduces the provider’s ability to offer unique services and

weakens their competitive advantage. Furthermore, an adversary could profit from the

stolen model, creating direct competition for the original provider.

The private dataset is equally valuable due to the effort and cost involved in

its creation. Specialized datasets, such as those in medical imaging, require expertise

from professionals, making them expensive and time-intensive to develop. Additionally,

datasets containing sensitive or personal information, like medical records, must comply

with privacy regulations such as HIPAA. If the outputs of the target model reveal patterns

derived from this data, it could result in privacy violations, a loss of trust, and potential
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legal or financial penalties.

In conclusion, the theft of the target model or private dataset poses serious risks,

including financial losses, damage to reputation, and reduced competitiveness. These

risks emphasize the need for robust security measures to protect these critical assets.

5.6. Countermeasures

While countermeasures to black-box model extraction attacks are critical in prac-

tice, they are beyond the primary scope of this thesis. This study focuses on developing a

simple model extraction attack for an adversary with easy access to unlabeled data, lever-

aging self-supervised learning methods while maintaining a low query budget rather than

exploring defensive strategies. However, for completeness, key countermeasures from

the literature are summarized below, along with references to studies that address these

challenges.

Defenses against model extraction attacks can be grouped into reactive and proac-

tive approaches. Reactive defenses focus on identifying and responding to attacks either

during or after they happen. For example, ownership verification methods, like Dataset

Inference (Maini, Yaghini, and Papernot 2021), check if a substitute model was trained

using the original dataset by measuring the distance of training samples from the decision

boundary. However, this method has limitations when the dataset is publicly available, as

models trained on similar data might be incorrectly flagged as stolen (Li et al. 2022). An-

other reactive method is watermarking, which embeds hidden information into the model

during training. Techniques like DAWN (Szyller et al. 2021) change the model’s output

for specific queries, while DynaMarks (Chakraborty et al. 2022) adds random changes to

confidence scores, embedding watermarks without reducing usability. Monitoring sys-

tems, such as PRADA (Juuti et al. 2019), analyze query patterns and detect suspicious

behavior when query distributions deviate from normal ones.

Proactive defenses aim to stop effective model stealing by making stolen models

less useful. Output perturbation methods limit the information adversaries can collect, like

rounding confidence scores or returning only top-k labels (Tramèr et al. 2016). (Orekondy,

Schiele, and Fritz 2019) introduced Maximizing Angular Deviation (MAD), which mod-

ifies confidence scores to distort gradients, making extraction harder.
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Combining reactive approaches, such as monitoring and watermarking, with proac-

tive methods like perturbation can make model stealing much harder. These defenses come

with trade-offs, like reduced accuracy or higher computational costs, but they effectively

protect machine learning models.

The proposed model extraction attack introduces novel challenges for existing

countermeasures due to its reliance on self-supervised learning and pseudo-labeling tech-

niques. Traditional monitoring-based defenses, such as PRADA, primarily detect attacks

based on query distribution deviations, which may be ineffective against this method as

it minimizes the number of queries and strategically selects samples that resemble nat-

ural data distributions. Similarly, ownership verification techniques struggle to detect

model theft when an attacker constructs a substitute model using unlabeled data and self-

supervised learning, rather than relying heavily on the target model’s labeled outputs.

Watermarking techniques like DAWN and DynaMarks, which modify specific outputs,

may also be circumvented if the pseudo-labeling process effectively smooths these alter-

ations over multiple training iterations.

A potential countermeasure against this approach could involve adversarial query

obfuscation, where the API model returns adversarially perturbed predictions to dis-

rupt feature extraction and similarity-based pseudo-labeling. Another direction could

be active response mechanisms, where models introduce controlled inconsistencies in

responses to suspected adversarial queries, making it difficult to derive useful representa-

tions through self-supervised learning. Given the stealth and efficiency of the proposed

attack, countermeasure development must consider both query minimization strategies and

self-supervised feature extraction, which are currently underexplored in existing defenses.
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CHAPTER 6

CONCLUSION

This thesis presented a new strategy for executing model extraction attacks in black-

box machine learning environments, focusing on minimizing the number of queries while

ensuring high accuracy in the substitute model. The approach utilizes self-supervised

learning through the SimCLR framework to derive meaningful feature representations

from large collections of unlabeled data. By combining this foundation with a novel

pseudo-labeling process that incorporates both confidence-based and similarity-based

techniques, the method effectively expands the transfer dataset with high-quality labels,

improving the substitute model’s generalization ability.

A key contribution of this research is its ability to surpass the existing bench-

mark method MixMatch, especially in scenarios with constrained query budgets. Unlike

MixMatch, which relies on intricate semi-supervised techniques, the proposed method

achieves similar or better accuracy with a more streamlined and accessible implementa-

tion. The robustness and scalability of this approach are evident in its performance under

low-query conditions, achieving state-of-the-art results while maintaining computational

efficiency. This makes the method not only effective but also practical for real-world

applications in black-box settings.

The uniqueness of this work lies in its combination of self-supervised learning and

pseudo-labeling for model extraction. SimCLR serves as the backbone of the method, re-

ducing the reliance on labeled data and addressing a major limitation in existing techniques.

The two-stage pseudo-labeling strategy enhances the dataset quality: high-confidence pre-

dictions provide reliable labels, while similarity-based assignments ensure greater diversity

and adaptability. The approach’s effectiveness has been demonstrated through rigorous

experiments, consistently outperforming benchmarks across various query budgets and

scenarios.

Furthermore, this thesis demonstrates a use case scenario on medical imaging

data, showcasing the feasibility of the proposed method in a low-budget model extraction

setting. By applying the approach to chest X-ray classification, we highlight how self-

supervised learning and pseudo-labeling can effectively extract a substitute model with

46



limited labeled data, reinforcing its applicability in real-world domains where acquiring

labeled datasets is challenging.

This study also offers a comprehensive threat model that examines the potential

risks and impacts of model extraction attacks. The analysis highlights the importance

of addressing adversarial threats and developing appropriate safeguards by placing the

proposed method within the broader context of machine learning security.

6.1. Future Work

Although this thesis makes substantial progress in improving the efficiency and

accuracy of model extraction attacks, it opens avenues for further exploration. Future

research could focus on developing defenses against such attacks, including methods such

as query monitoring, output obfuscation, and watermarking to deter adversarial behavior.

Expanding the approach to cross-domain settings, where the surrogate and target datasets

differ significantly, could further test its adaptability and generalization.

In addition, incorporating other self-supervised frameworks, such as BYOL or

MoCo, could reveal alternative methods to achieve similar objectives. Exploring the

application of this approach to generative models, such as stable diffusion and VAEs,

presents another potential research direction.

Another promising research direction is the application of self-supervised learning

techniques for model extraction attacks on text-based models. Similar to vision-based self-

supervised learning, natural language processing (NLP) models can leverage unlabeled text

corpora to learn high-quality feature representations. Frameworks such as SimCSE (Gao,

Yao, and Chen 2021) utilize contrastive learning-based pretext tasks tailored for text data,

enabling the extraction of robust sentence embeddings without requiring extensive labeled

datasets. These embeddings can then be fine-tuned for downstream applications, allow-

ing adversaries to construct substitute models with minimal query interactions. Unlike

traditional model extraction attacks that rely on direct queries to an API, self-supervised

learning facilitates the training of substitute models using publicly available text data,

significantly reducing dependency on target model output. This approach makes detection

more challenging, as adversaries can refine extracted representations offline before making

strategic queries. As large-scale language models continue to dominate NLP applications,
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understanding their vulnerabilities to self-supervised extraction techniques is crucial to

developing effective countermeasures. Future research should explore methods to de-

tect and mitigate these risks, ensuring that proprietary models remain protected against

emerging self-supervised model extraction strategies.

Ethical considerations also remain an essential topic, as the development of regu-

latory policies will be critical to safeguarding intellectual property and preventing misuse

of such techniques.

In conclusion, this thesis delivers a well-rounded framework for performing model

extraction attacks using self-supervised learning and pseudo-labeling. Advancements in

the field, both methodologically and practically, lay a solid foundation for future work in

adversarial machine learning, while emphasizing the need for ethical practices and robust

defenses in AI systems.
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