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ABSTRACT

EFFICIENT IMAGE MATCHING USING HYPERDIMENSIONAL
COMPUTING AND GROUP TESTING

The widely adopted image matching approach remains dependent on exhaustive matching of local
features across images. We challenge this approach and investigate enhancing matching efficiency by
not approximating nearest neighbors but using a hierarchical approach. We hypothesize that efficiently
identifying sufficiently similar geometrically meaningful feature matches, as opposed to the most similar
but geometrically random ones, can improve or maintain matching performance, with lower computational
complexity. We propose a novel method named group-guided nearest neighbors, which involves matching
groups of features as one and then matching individual features across matched groups only. The hierarchical
pipeline reduces the time complexity of feature matching from ®(n?) to ®(nyn). Empirical results on
homography and pose estimation indicate that our method outperforms the nearest neighbors algorithm and
achieves the performance level of other inefficient methods. We formulate the proposed method as a general
framework that offers a continuum of methods with varying levels of computational cost. Additionally, we
introduce a linear-time matching algorithm which first tests memberships of the most distinct features to
feature groups of the other image, then matches these distinct features only with the members of the matched
groups. Experiments show that this algorithm performs better than linear-time adaptations of quadratic-time
algorithms. We also propose techniques for generating better synthetic image pair datasets for homography
estimation and faster evaluation of image matching pipelines. These contributions result in an improved
image matching framework with more realistic datasets, faster evaluation, and high-performance matchers

with various time complexities.
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OZET

HIPER BOYUTLU HESAPLAMA VE GRUP TESTI KULLANARAK
VERIMLI IMGE ESLEME

Yaygin olarak kullanilan imge esleme yaklasimi, imgeler arasinda yerel 6zniteliklerin kapsamli bir
sekilde eslestirilmesine dayanmaktadir. Bizler, bu yaklagimi karsimiza aliyor ve en yakin komsular tizerinden
tahmin yaparak degil de hiyerarsik bir yaklagim kullanarak esleme verimliliginin artirilmasini inceliyoruz.
En benzer ancak geometrik olarak rastgele oznitelik eslemelerinin aksine, yeterince benzer ve geometrik
olarak anlaml 6znitelik eslemelerinin verimli bir gekilde saptanmasinin, daha diisiik hesaplama karmasiklig
ile eslesme performansini artirabilecegini veya koruyabilecegini varsayiyoruz. Grup giidimlii en yakin
komsular adinda yeni bir yontem Oneriyoruz. Bu yontem, 6znitelik gruplarinin bir olarak eglesmesini ve
ardindan yalnizca eglesen gruplar arasinda bireysel ozniteliklerin eslesmesini icerir. Hiyerarsik boru hatti,
oznitelik eslemenin zaman karmasikligin1 ©(n?)’den ®(n+/n)’ye diisiirii. Homografi ve poz tahminine
iligkin deneysel sonuglar, bizim yontemimizin en yakin komgu algoritmasindan daha iyi bir sonug verdigini
ve diger verimsiz yontemlerin performansim yakaladigini gostermektedir. Onerilen yontemi, degisen
seviyelerde hesaplama maliyetlerine sahip yontemlerin devamliligini sunan genel bir ¢erceve olarak ifade
ediyoruz. Ayrica oncelikle en belirgin 6zniteliklerin diger imgenin 0znitelik gruplarina iiyeliklerini test
eden, ardindan bu belirgin 6znitelikleri yalnizca eslesen gruplarin iiyeleriyle eslestiren bir dogrusal zamanh
esleme algoritmasi sunuyoruz. Deneyler gosteriyor ki, bu algoritma karesel zaman algoritmalarinin dogrusal
zaman uyarlamalarindan daha iyi bir performans sergiliyor. Homografi tahmini i¢in daha iyi sentetik imge
¢ifti veri kiimeleri olusturulmasi ve imge esleme boru hatlarinin daha hizli degerlendirilmesi i¢in teknikler
de sunuyoruz. Bu katkilar sonucunda daha gercekei veri kiimeleri iceren, daha hizli degerlendirme yapan ve
cesitli zaman karmagikliklarina sahip yiiksek performansli eglestiriciler iceren iyilestirilmis bir imge egleme

gergevesi ortaya ¢cikmaktadir.
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CHAPTER 1

INTRODUCTION

Matching two or more images of the same scene is a fundamental problem in computer vision and
serves as a prerequisite for various applications, including image stitching (Levin et al. 2004; Brown and
Lowe 2007; Szeliski et al. 2007; Zaragoza et al. 2013; Adel, Elmogy, and Elbakry 2014; Lin et al. 2015;
Wang and Yang 2020), 3D reconstruction (Ullman 1979; Wu 2011, 2013; Schonberger and Frahm 2016;
Schonberger et al. 2016; Moulon et al. 2017; Lindenberger et al. 2021; Xiang Wang et al. 2021; Bastanlar
etal. 2010), and simultaneous localization and mapping (Montemerlo et al. 2002; Durrant-Whyte and Bailey
2006; Bailey and Durrant-Whyte 2006; Thrun 2008; Mur-Artal, Montiel, and Tardos 2015; Fuentes-Pacheco,
Ruiz-Ascencio, and Rendén-Mancha 2015; Stachniss, Leonard, and Thrun 2016; Placed et al. 2023). Figure
1.1 illustrates the inputs, outputs, and sample applications of image matching.

Image matching typically involves extracting local features from all images and matching the most
similar features across images. This process is followed by a robust estimation which searches the largest
subset of matches that are geometrically consistent.

Many works aimed at enhancing the pipeline has been concentrated on either improving feature
extraction or accelerating the geometric verification of feature matches. Nevertheless, the feature matching
step has remained relatively unchanged, continuing to depend on either exact or approximate nearest neighbor
(NN) search in descriptor space.

Efforts in feature matching tend to be categorized into two groups: either a comprehensive solution
that is more accurate yet computationally more expensive than exact NN search with simple filters, or an
approximate search that is more efficient but less accurate than exact NN search. A recent and successful
exemplar of accurate solutions is AdalLAM (Cavalli et al. 2020), which establishes region matches between
images and filters feature matches based on these region matches. However, methods like AdaLAM rely
on nearest neighbors and add extra steps at the end of the exhaustive search rather than replacing it. This
approach limits their efficiency. On the other hand, approximate NN methods such as FLANN-based
solutions (Muja and Lowe 2009) result in a substantial degradation of performance (Jin et al. 2021).

To the best of our knowledge, no work has improved the efficiency of exhaustive feature matching

without compromising its accuracy.
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Figure 1.1. Image Matching with Sample Applications

1.1. Thesis Statement

We observe that the NN search process for feature matching represents a “leaky abstraction”. This
is to say that simply identifying the most similar features may not lead to geometrically meaningful results,
especially when dealing with repetitive patterns in images. Even when geometric validation successfully
identifies and eliminates these highly similar but incorrect feature correspondences, they continue to cause
problems by slowing down the validation process and hindering the use of information from the correct
matches of these features.

In our study, we ask: Is it possible to enhance the efficiency of feature matching without losing
its accuracy, using a hierarchical approach that does not depend on exhaustive search among feature
descriptors? Our thesis is that efficiently identifying sufficiently similar geometrically meaningful feature

correspondences, rather than the most similar but geometrically random ones, can potentially improve or at



least maintain matching performance.

We draw inspiration from the human visual system which recognizes objects based on high-
level features, advanced feature filtering methods such as AdaLAM (Cavalli et al. 2020), which verifies
feature matches locally around distinct matches, and recent group testing (Iscen and Chum 2018) and
hyperdimensional computing (Neubert and Schubert 2021) methods applied to computer vision problems.

We propose two distinct feature matching strategies, both employing a hierarchical approach.
Instead of directly matching individual features across images, we first group the features within each image.
The Group-Guided Nearest Neighbors (GGNN) algorithm matches feature groups first and then matches
individual features within those groups. Conversely, the Group-Tested Nearest Neighbors (GTNN) algorithm
matches individual features to feature groups initially, and subsequently matches individual features within
the matched groups. Figure 1.2 illustrates the matching strategies.

Both algorithms reduce the time complexity of the matching process from @(n?) to @(n+/n) when
considering \/n groups of features, where n represents the total number of features. Additionally, GTNN
improves efficiency further and achieves ®(r) time complexity by matching only the top v/n features, rather

than all n features, to all groups in the other image.

NN variants

Match features to features.

GGNN

Match groups to groups.

GTNN

Match features to groups.

Figure 1.2. Feature Matching Strategies: This figure illustrates the initial stages of NN variants and two
proposed group-based matching methods.



1.2. Thesis Structure

The organization of the thesis is as follows:

Chapter 1: We introduce the primary problem addressed in this research and outline our proposed
approach.

Chapter 2: We provide the necessary background knowledge, covering fundamental concepts and
discussing related work in the literature.

Chapter 3: We present a concrete solution to the problem. This includes the introduction of
group-guided nearest neighbors (GGNN), along with its pre- and post-processing stages. We demonstrate
the efficiency of this solution, which has a time complexity of ®(n+/n) instead of ®(n?), and its effectiveness
in various homography estimation tasks.

Chapter 4: We generalize the computation of hierarchical regions, enabling the use of any number
of regions with any number of features. We introduce group-tested nearest neighbors (GTNN), an alternative
to GGNN that compares top features with groups of features, achieving linear time complexity and thus being
more efficient. We present methods for quick approximate evaluation of image matchers for hyperparameter
optimization and an accurate image warping algorithm utilizing single image superresolution techniques to
create realistic synthetic image pairs. Lastly, we extend estimation-guided matching to epipolar geometry
and assess the pose estimation performance of the hierarchical matching algorithm.

Chapter 5: We summarize our contributions and findings and outline potential directions for

future work.



CHAPTER 2

BACKGROUND

This chapter presents an overview of the fundamentals of image matching, the key concepts that
inspire our work, and the relevant literature essential for understanding the discussions that follow in this

thesis.

2.1. Image Matching Fundamentals

Image matching is the process of establishing point correspondences between images of the same
scene to estimate the geometric relationship between the cameras.

Figure 2.1 shows a pair of images that can be matched. The process of estimating geometric
transformation between images typically begins with the extraction of sparse, local features from each
image. These features consist of keypoints, which are distinct interest points, and their associated descriptor
vectors computed from the surrounding image patches. The features are then matched across the images by
identifying the most similar pairs and retaining only the geometrically consistent matches. Once reliable point
correspondences between the images are established, estimating the transformation parameters becomes
straightforward by minimizing the squared errors.

Figure 2.2 visualizes keypoints of the images. Numerous algorithms exist for keypoint detection,
each with its own strengths and characteristics. Some algorithms offer better localization and repeatability,
while others prioritize speed. There are both handcrafted and learned methods. Certain algorithms detect
corners, while others detect blobs. Some detect circles of uniform sizes, while others detect circles of
varying sizes to better handle scale differences between images. Additionally, some algorithms calculate
a dominant 2D orientation to normalize the patch to a canonical form, and some identify affine shapes to
enhance robustness to viewpoint changes.

Once the keypoints are detected, the next step is to describe the image patches marked by keypoints
with descriptor vectors that are invariant or robust to geometric and photometric differences, such as changes
in viewpoint or brightness. This ensures that the keypoints can be reliably matched across different images
despite these variations. Some algorithms only detect keypoints, some only compute descriptors, and some
perform both tasks. We refer to a keypoint and its corresponding descriptor jointly as a ‘local feature’ (in

short, ‘feature’).



Figure 2.1. Sample Inputs for Image Matching: Because the scene is planar, the two images are related by
a projective transformation, which can be represented by a homography matrix with 8 degrees of freedom.
In this case, the task of an image matcher is to accurately estimate these 8 parameters, which is possible
by determining 4 perfect point correspondences or more imperfect ones. If the camera movement were
constrained to simpler transformations, there would be fewer parameters to estimate. For example, if there
were only a 2D rotation, only one parameter, the angle, would need to be estimated. In contrast, if the scene
were three-dimensional, more parameters would need to be estimated for general camera movements, either
the essential matrix or the fundamental matrix, depending on whether the cameras are calibrated.

Figure 2.2. Outputs of Keypoint Detection: 2048 Difference of Gaussians (DoG) keypoints (represented
as circles with orientations) are detected independently in both images. Some keypoints (marked in green)
are repeated in the other image, meaning their centers, when projected using the true homography matrix,
align closely with a keypoint center in the other image. Orange-marked keypoints are repeated with a less
strict threshold, while red-marked keypoints are not repeated. High repeatability is a desired characteristic
of keypoint detectors, as non-repeated keypoints cannot be matched, even with a hypothetical perfect feature
matcher. Note that due to non-overlapping regions in the images, certain keypoints cannot be repeated, such
as those close to the bottom-left and top-right corners of the right image.

Figure 2.3 visualizes the tentative feature matches between the images. Note that this matching
procedure is not geometry-aware, and no filtering based on geometric verification has been applied yet.

Tentative feature matches often contain mismatches, known as outliers. Typically, outliers are much
more common than inliers. However, it is often possible to filter out the outliers because they are generally

geometrically random and, consequently, inconsistent with other matches. In contrast, inliers, even if few

in number, are all consistent with each other and have an approximate consensus on the transformation



Figure 2.3. Outputs of Feature Matching: SIFT features (centers of the previously detected DoG keypoints
and their corresponding descriptor vectors) are matched with their nearest neighbors in descriptor space
across images. The search is bidirectional, retaining only mutual matches. Additionally, only the 512
matches with the smallest descriptor distances are kept. Green-marked matches are the best, orange-marked
matches are moderate, and red-marked matches are the worst, as compared to the ground truth homography
matrix.

parameters. Geometric verification can be applied either locally or globally. Local geometric verification
can be used as a prefiltering method to reduce the contamination rate—the ratio of the number of outliers
to all matches—thereby increasing the success chance of global geometric verification. Global geometric
verification is performed using a Monte Carlo algorithm, where the time is constrained and success is
probabilistic. In the global approach, a large consistent subset is identified among all matches, with the
remaining matches being rejected. Figure 2.4 visualizes the inliers identified solely through global geometric
verification, excluding any local verification among the previously established feature matches.

The Direct Linear Transform (DLT) algorithm works by solving a set of linear equations derived
from point correspondences between two images. Since each 2D point provides two coordinates, solving
for the transformation parameters requires establishing n point correspondences to satisfy 2n degrees of
freedom. For instance, to estimate the parameters of a projective transformation, a minimum of four point
correspondences is required. However, in practical applications, due to localization errors, approximately
20 point correspondences are typically needed to achieve accurate results. In this case, the system is
overdetermined, meaning there are more correspondences than the theoretical minimum. Singular Value
Decomposition (SVD) is used to find a least-squares solution by minimizing the sum of squared residuals,
considering all the correspondences. Figure 2.5 visualizes the estimated parameters alongside the ground
truth.

Table 2.1 shows the important properties of the most common 2-dimensional geometric transfor-
mations. A rigid transformation is also known as a Euclidean transformation. These transformations may

occur in planar scenes when the cameras are moved. For example, a similarity transformation occurs when

the camera moves in three dimensions but only changes its orientation in the roll direction. Roll refers to the



Figure 2.4. Outputs of Outlier Filtering: Outlier filtering, or geometric verification, involves determining the
transformation parameters that have the largest consensus among the provided point correspondences. The
most popular algorithm for performing this task is Random Sample Consensus (RANSAC). The RANSAC
algorithm is used to reject outliers among the matches. In its simplest form, RANSAC randomly samples
a minimal subset of matches to estimate the transformation parameters, which in this case requires 4 point
correspondences since they produce 8 equations to estimate 8 parameters. Then, all matches that are
sufficiently consistent with the parameters suggested by the minimal subset are counted. This process is
repeated many times, and the minimal subset with the best support (highest count) is chosen as the best
hypothesis. Matches inconsistent with this best hypothesis are then eliminated. RANSAC has many variants
that improve upon its basic components.

Figure 2.5. Estimated and True Homographies: The corners of the left image were projected onto the right
image using both the estimated homography (marked in red) and the true homography (marked in green).
The estimated quadrilateral is nearly invisible because it almost perfectly aligns with the true one. Note that
neither the automobile visible in the first image nor the ground visible in the second image prevents accurate
determination of the camera movement. Since the scene is mostly planar, these elements are treated as
occlusions that must be discarded, and local features are capable of handling them effectively.

rotation of the camera around the axis that points in the direction the camera is facing, causing the image
plane to rotate in 2D. Figure 2.6 illustrates these transformations. All these transformations are closed under

composition and inversion. If H; and H, are homography matrices representing projective transformations,

then their products H,H, and HyH}, as well as their inverses Hy 'and H} I, are also homography matrices.



Table 2.1. Expressive Powers of 2D Geometric Transformations

Translation Rigid Similarity Affine Projective

Nonuniform scaling
Shear
Perspective projection
Composition of projections

Degrees of freedom 2 3 4 6
Translation v v v v
Rotation v v v
Uniform scaling v v
v

v

SNENENENENENENES

Figure 2.6. 2D Geometric Transformations: This figure illustrates how a square can be transformed under
various classes of geometric transformations. The most general transformation is the projective transforma-
tion, where all four corners of the square can move independently.

2.2. Key Inspirations

Hyperdimensional computing (HDC) (Kanerva 2009, 2022) is a computational paradigm inspired
by high-dimensional vector spaces and human cognitive processes. It uses hypervectors to efficiently encode,
process, and retrieve information. In HDC, data points in high-dimensional space undergo operations
like binding and bundling (superposition), enabling robust, noise-tolerant computations due to redundant
representation. This redundancy ensures data integrity even when some components are altered or lost.
HDC excels in associative memory and pattern recognition tasks, manipulating complex data structures with
simple mathematical operations. Its resilience to errors, noise, and capacity for parallel processing make
HDC a scalable, energy-efficient alternative for Al, cognitive computing, and data-intensive applications.
Recently, HDC has been utilized in computer vision for systematically aggregating image descriptors.

This approach leverages binding and bundling operations to combine multiple image descriptors into a



single holistic vector, significantly improving performance in tasks like place recognition in mobile robotics
(Neubert and Schubert 2021).

Group testing (Du, Hwang, and Hwang 2000; Aldridge, Johnson, and Scarlett 2019) is a com-
binatorial method for identifying defective items within a large population by testing groups rather than
each item individually. Initially proposed during World War II for detecting syphilis in the U.S. Army, this
technique involves pooling samples and testing the pools. If a pool tests negative, all items within it are
deemed non-defective; if positive, further testing identifies the defectives. Group testing leverages the prin-
ciples of combinatorial mathematics to design efficient pooling strategies, making it particularly effective
in low-prevalence scenarios by significantly reducing the number of tests and saving time and resources.
This method is adaptable to various problem settings and is applied in fields such as medical diagnostics,
manufacturing quality control, and network security, optimizing the testing process while maintaining high
accuracy and reliability. Recently, group testing has been applied in computer vision for efficient approxi-
mate nearest neighbor search in large-scale image retrieval (Iscen and Chum 2018). This approach enhances
search accuracy while reducing computational complexity, making it suitable for processing large datasets

in parallel and in batches.

2.3. Related Work

2.3.1. Features for Sparse Matching

In image matching systems handcrafted feature extractors such as SIFT (David G Lowe 1999,
2004) along with its variants (Ke and Sukthankar 2004; Bastanlar, Temizel, and Yardimci 2010; Yu and
Morel 2011; Brown and Siisstrunk 2011; Arandjelovi¢ and Zisserman 2012) and alternative real-valued
descriptors (Mishchuk et al. 2017; DeTone, Malisiewicz, and Rabinovich 2018; Barroso-Laguna et al. 2019;
Z. Luo et al. 2019; Tian et al. 2020; Tyszkiewicz, Fua, and Trulls 2020; Gleize, Wang, and Feiszli 2023)
have been widely adopted due to their robustness against photometric and geometric transformations.
With the advent of deep learning, convolutional neural networks have been employed to learn feature
descriptors directly from data, which has shown superior performance over handcrafted methods for most
tasks. Binary descriptors have also gained popularity due to their computational efficiency and lower
memory requirements. Techniques such as BRIEF (Calonder et al. 2010; Calonder et al. 2012) and ORB
(Rublee et al. 2011), which are handcrafted descriptors, along with LATCH (Levi and Hassner 2016) and
BEBLID (Sudrez et al. 2020), which are learned descriptors, provide a faster alternative to real-valued

descriptors.
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2.3.2. Matching of Sparse Features

Traditional methods like Nearest Neighbors (NN) and Mutual Nearest Neighbors (MNN) have
been foundational for matching sparse features. MNN works by applying the nearest neighbors method
bidirectionally and then calculating the intersection, retaining only the mutual matches. This ensures fewer
mismatches by confirming that a feature in one image is the nearest neighbor of a feature in the second
image and vice versa. However, it often reduces the number of correct matches as well.

To enhance robustness, the Nearest Neighbors with Ratio Test (SNN) (David G. Lowe 2004) was
introduced. SNN compares the distance of the closest neighbor to that of the second-closest, filtering out
matches where the ratio exceeds a predefined threshold. This ratio test effectively reduces false matches
by ensuring that the best match is significantly closer than the second-best match. SNN has been highly
influential in the development of newer algorithms and continues to remain relevant today. A more recent
approach, SMNN (Jin et al. 2021), combines the principles of MNN and SNN to further refine the matching
process by ensuring mutual consistency and applying a ratio test, thereby reducing false matches.

Beyond descriptor-only methods, some techniques are geometry-aware, meaning they consider
the spatial relationships between keypoints. First Geometrically Inconsistent Nearest Neighbors (FGINN)
(Mishkin, Matas, and Perdoch 2015) and Adaptive Locally-Affine Matching (AdaLAM) (Cavalli et al. 2020)
are notable for incorporating geometric constraints into the matching process. FGINN extends SNN by
searching for second nearest neighbors only among keypoints that are spatially distant from the first nearest
neighbor, producing a superset of SNN. AdalLAM is a more advanced system, filtering NN matches with
local geometric verification around SNN matches using Random Sample Consensus (RANSAC) (Fischler
and Bolles 1981). Figure 2.7 illustrates the Hasse diagram of the matches produced by these algorithms.

Efficient alternatives to exact NN methods have been extensively explored in the literature. Notably,
the Fast Library for Approximate Nearest Neighbors (FLANN) (Muja and Lowe 2009) employs multiple
randomized kd-trees (Silpa-Anan and Hartley 2008) and hierarchical k-means trees (Muja and Lowe 2009)
to approximate NN. Although these methods offer improved efficiency, they perform worse than exhaustive
nearest neighbor searches in terms of matching accuracy (Jin et al. 2021).

Additionally, hash-based methods such as LDAHash (Strecha et al. 2011) and CasHash (Cheng
et al. 2014) provide efficient indexing of descriptors. While these methods are more efficient, they are
typically less accurate than tree-based methods and are often implemented in a feature-specific manner,
which is another disadvantage.

Another category of approximate NN algorithms includes graph-based matchers (M. Wang et

al. 2021), which scale well for searching. Examples include the Navigating Spreading-out Graph (NSG)
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FGINN MNN AdaLAM
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Figure 2.7. Hasse Diagram of the Selected Feature Matching Algorithms: The matches identified by the
algorithms are ordered by set inclusion. For instance, MNN is a subset of NN. This partial order is valid only
when identical parameters are applied. For example, FGINN is a subset of SNN under the same threshold
conditions. This is particularly significant for SMNN, as it is a subset of both MNN and FGINN. To mitigate
the strict constraints, SMNN is generally employed with less strict thresholds.
(Fu et al. 2017) and Hierarchical Navigable Small World (HNSW) (Malkov and Yashunin 2018). These
algorithms are utilized for general searches in large vector databases and are not limited to local feature
matching across two images.

All these tree-based, hash-based, and graph-based approximate nearest neighbor methods are purely
descriptor-based and do not incorporate geometric awareness. Consequently, even under optimal conditions,
these algorithms can only perform as well as exact NN methods and not better, for sufficiently large datasets.

The matching algorithm proposed in the following chapter neither filters nor approximates NN. It

is designed to be more efficient than exact NN and more accurate than approximate NN.

12



CHAPTER 3

HIERARCHICAL IMAGE MATCHING WITH

GROUP-GUIDED NEAREST NEIGHBORS

Exact Nearest Neighbor (NN) search with heuristic filtering remains on the Pareto front for bal-
ancing image matching performance and computational efficiency. We propose a hierarchical pipeline that
employs hyperdimensional computing for efficient group testing of feature similarities. Figure 3.1 illustrates
the main idea behind this approach, which first detects, describes and matches feature groups rather than
directly matching individual features. Experimental evidence suggests that this group-based approach is not

only efficient but also highly effective for image matching.

(a) Image with a pyramid of circular regions (b) Region as a group of local features

Figure 3.1. Hierarchical Approach for Feature Matching: (a) illustrates the coarse feature matching where
the images are divided into regions of varying sizes, resulting in v/n regions for n features. Each region is then
compactly described by aggregating the group of local features detected within it, as shown in (b), instead
of using a descriptor extraction method directly. This aggregation helps to discard the vast, uninformative
space within the region. Subsequently, groups of features are matched across images, followed by the
matching of individual features within the corresponding groups.

3.1. Approach

We propose Group-Guided Nearest Neighbors (GGNN), a hierarchical approach to matching image
pairs. Initially, we describe features with vectors that are probably approximately orthogonal to each other.
We then spatially group keypoints and represent each group with a single descriptor vector formed through

aggregation. Our process matches these groups across images, and we carry out feature matching and
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match filtering within these matched groups. By matching these groups across images and performing
feature matching across group matches instead of conducting a global search, we enhance efficiency. Our
method showcases a lower time complexity than NN search. Figure 3.2 illustrates both matching strategies.
Subsequently, we perform a robust estimation of the geometric transformation. Finally, we apply a guided
matching procedure to further refine the estimated transformation. Figure 3.3 shows an overview of the

proposed system.

3.1.1. Probably Approximately Orthogonal Feature Description

The simple summation operation effectively represents a set of vectors when the involved vectors
are pairwise orthogonal. The expected value for the angle between two random, zero-centered descriptor
vectors in k£ > 1 dimensions is 90°. However, the variance is significant in relatively lower-dimensional
spaces, particularly when the descriptors are not statistically random. Achieving perfect orthogonality
among descriptors without compromising other desirable characteristics such as matchability is infeasible.
To achieve “probably approximately orthogonal” vectors, we employ higher-dimensional descriptor vectors
than usual, as vectors in higher dimensions are more likely to exhibit orthogonality. This approach is inspired
by the principles of hyperdimensional computing (Kanerva 2022), where vector symbolic architectures
enable symbolic computation using very high-dimensional random vectors. These vectors, when subjected
to algebraic operations, function akin to distinct symbols.

We explored various publicly available feature extractor algorithms and their combinations through
concatenation, focusing on binary descriptors since they are faster to compute and compare, and usu-
ally higher-dimensional than the real-valued alternatives. The concatenation of bipolar representations of
two binary descriptors, 512-dimensional LATCH (Levi and Hassner 2016) and 512-dimensional BEBLID
(Suérez et al. 2020), computed on Oriented FAST (Rublee et al. 2011) keypoints, emerged as an effective
solution in terms of orthogonality and matchability. To enhance orthogonality, we identified more suitable
configurations of these algorithms than their default settings in OpenCV (Bradski 2000). Additionally, we
implemented non-maximum suppression on keypoints based on their response scores to enhance orthogo-
nality further, in response to our observation that keypoints in close spatial proximity are less likely to yield

orthogonal vectors.
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NN

O(n?)

Perform n? such comparisons to

obtain n best feature-feature matches.

n such features n such features
in the left image in the right image

GGNN

®(n) + yn - ©(n) = O(nvyn)

Perform n such comparisons to

A 4

obtain v/n best group-group matches.

/i such groups v/n such groups
of y/n features of \/n features
in the left image in the right image

Then for each of the v/n group-group matches:

Perform n such comparisons to

obtain /n best feature-feature matches.

y/n such features /n such features
in the left group in the right group

(n feature-feature matches are obtained in total.)

Figure 3.2. Feature matching in ®(n+/n) time: The widely adopted strategy for matching features involves
searching for the most similar feature pairs. The NN strategy encompasses not only the basic NN algorithm
but also various algorithms that approximate NN, as well as those that rely on NN before filtering the
matches. GGNN has a lower time complexity because it does not require an exact NN search. Additionally,
it does not approximate NN, meaning that in the best-case scenario, its output differs from NN. The objective
of GGNN is to find sufficiently similar, geometrically meaningful matches.
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Figure 3.3. Comprehensive System Overview: The diagram illustrates the computational processes applied
to individual images (left) and to pairs of images (right). It is important to note that for a dataset of m
images, the number of potential image pairs escalates to ®(m?). This exponential increase underscores
the significance of optimizing the efficiency of computations that are performed for each image pair. For
optimal visual clarity, viewing in color is recommended.
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3.1.2. Spatial Grouping of Local Features

The hierarchical approach necessitates the grouping of local features. In our experiments, it was
observed that grouping features based on keypoint positions consistently outperforms random grouping or
grouping based on descriptor vectors, such as maximizing intra-group pairwise orthogonality.

Various spatial grouping strategies were explored, including the use of top-scale keypoints as
regions, clustering of keypoints, and random sampling of large circles on images. Remarkably, the most
effective method was also the simplest: employing fixed-size, overlapping circles that are systematically
sampled, with their centers forming a grid layout. The total number of these circular regions correlates with
the time allocated for solving the matching problem. We suggest using /n regions where # is the number
of features. Other hyperparameters, such as circle sizes and distances between them, were empirically
handpicked without overfitting. These parameters could potentially be further tuned in the future using
larger, more diverse datasets or those specific to certain domains. The sampling algorithm was improved
by introducing a pyramid-like pattern of variable-size circles, which better accommodates scale differences
between images.

It was observed that groups are biased towards matching with groups of higher cardinalities,
severely limiting the spatial distribution of group matches across the images and significantly reducing
image matching performance. To address this issue, we ensured a consistent feature count within each
group. In regions with an excess of keypoints, only those with the highest scores were selected. Conversely,
if a region had insufficient keypoints, the circle size was increased to include the necessary number. This
approach allows for unbaised comparison of aggregated descriptors and leads to better utilization of group
count budget.

To aggregate descriptors, we employed element-wise addition of the bipolar representation of
binary descriptors. This operation, referred to as “bundling” in hyperdimensional computing literature,
efficiently represents a superposition of orthogonal vectors. There is no need for L, normalization of the

vectors since they all possess the same L, norm, with components being either 1 or —1.

3.1.3. Group-Guided Feature Matching

Once individual features are computed and groups are formed and described, we match these \/n
groups of features across images (right side of Fig. 3.3). We compare the group descriptors using cosine
similarity, as our experiments demonstrated that it is more effective than other, more complex set-theoretic

formulations such as the Jaccard Index. This correspondence search is performed bidirectionally, considering
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the union of the resulting match sets. We retain only the top 50% of the group matches based on their vector
similarities to eliminate low-quality matches, resulting in a maximum of /1 group correspondences.

Next, we conduct feature matching for each of the matched groups across images. To limit the
impact of incorrectly matched groups and remove false feature matches, we first filter the nearest neighbors
using the mutuality constraint. We then perform local geometric verification by running multiple RANSACs
(Fischler and Bolles 1981) in parallel, similar to the method described in (Cavalli et al. 2020). We aggregate
all feature matches obtained from all group matches into a single pool, which contains at most n feature
matches, though typically fewer in practice.

This group-guided feature matching concept parallels the principles of group testing (Aldridge,
Johnson, and Scarlett 2019). In group testing, individual tests are simultaneously conducted on multiple
items. However, our approach involves not only grouping the items (features of the first image) but also the
tests (features of the second image). Adopting this two-way grouping strategy enhances the efficiency of the

testing process.

3.1.4. Robust Estimation and Guided Matching

When features are matched and pre-filtered, they often still contain outliers—matches that are
geometrically inconsistent with the largest consistent subset. To address this, we follow the standard
procedure of performing a robust estimation of the geometric transform, typically using RANSAC (Fischler
and Bolles 1981) or its variants (Chum, Matas, and Kittler 2003; Chum and Matas 2005; Brachmann
et al. 2017; Barath and Matas 2018; Brachmann and Rother 2019; Barath et al. 2020; Ivashechkin, Barath,
and Matas 2021; Barath, Cavalli, and Pollefeys 2022; Cavalli et al. 2023). We maintain a high threshold for
robust estimation to find a coarse estimation.

Next, we conduct estimation-guided feature matching using all keypoints. In this process, we
compare features with other features within a small neighborhood centered around the estimated location
of the keypoint. This is done using the ratio test for descriptors as described in (David G. Lowe 2004)
and scale-based filtering for keypoints as in (Cavalli et al. 2020). Guided matching is highly efficient as it
leverages the previously constructed quick keypoint search structure. We finalize the process with robust

estimation over the new feature matches, this time using a small error threshold.
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3.1.5. Computational Complexity

The time complexity of NN search is @(kn?), where k represents the descriptor dimensionality,
which is typically a constant, and n represents the feature count, a variable whose optimal value depends on
factors such as image resolution. In our approach, we use 41 groups containing +/n features. Our algorithm
requires ®(kn) time for exact group matching. Subsequently, matching +/n features to other /n features
takes ©(kn) time for each the v/ group matches. The total complexity for group-guided feature matching

thus becomes @ (kn+/n). Since k is normally a constant, this complexity can be simplified to @ (n+/n).

3.2. Evaluation

We evaluate the performance of the proposed method on the task of homography estimation using
the Oxford classic image matching dataset (Mikolajczyk and Schmid 2005). This dataset consists of 6
images for each of the 8 scenes, resulting in 48 image pairs with corresponding ground truth homography
matrices. By calculating homography matrices for all possible image pairs within each scene, we extend this
to a total of 288 image pairs, which we refer to as Oxford*. In the original dataset, the “Bikes” and “Trees”
scenes exhibit varying degrees of blur. The “Leuven” scene involves variations in light conditions, while
the “UBC” scene is characterized by JPEG compression. The “Graff” and “Wall” scenes depict changes in
viewpoint, and the “Bark™ and “Boat” scenes involve zoom and rotation adjustments.

Additionally, we use the Homogr dataset (Lebeda, Matas, and Chum 2012), which contains a
single image pair for each of the 16 scenes. Due to the small sample size and the similar performance of all
methods, we generate synthetically transformed image pairs to allow for differentiation among the methods.
Following the approach described in (DeTone, Malisiewicz, and Rabinovich 2016), we generate random
homographies by perturbing the image corners. This process allows for the creation of any number of image
pairs, and for our experiments, we generate 640 image pairs.

Lastly, we utilize the image sequences from the HPatches dataset (Balntas et al. 2017). This dataset
comprises 580 image pairs, with 285 pairs featuring illumination changes and the remaining 295 pairs
featuring view changes.

We employ the average corner error (ACE) (DeTone, Malisiewicz, and Rabinovich 2016; Le et
al. 2020; S.-Y. Cao et al. 2022; Li et al. 2022; Hong et al. 2022; Y. Luo et al. 2022; Luo, Wang, Liao,
et al. 2023; S. Cao et al. 2023; Liao, Luo, and Wang 2023; Luo, Wang, Wu, et al. 2023; Xingyi Wang
et al. 2023), a metric commonly used for assessing the accuracy of geometric transformations, for the

evaluation of the obtained transformation. ACE quantifies the average discrepancy between the true and
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estimated corner positions in the transformed image. Success is declared if the ACE value falls below 1%

of the image diagonal’s length; otherwise, it is considered a failure (Ivashechkin, Barath, and Matas 2021).

In experiments we use n = 4096 features. In practice the number of features can be as high as 8k

(Cavalli et al. 2020), 10k (Gleize, Wang, and Feiszli 2023), 12k (Tyszkiewicz, Fua, and Trulls 2020), 15k

(Jin et al. 2021), 20k (Santellani et al. 2022) or 40k (Suwanwimolkul, Komorita, and Tasaka 2021). The

theoretical speedup of the proposed method increases as the number of features increases.

Table 3.1 presents the performance of the proposed method on the dataset and compares it with

several classical and recent methods. The classical methods include nearest neighbors (NN), mutual nearest

neighbors (MNN), and nearest neighbors with ratio test (SNN) (David G. Lowe 2004). Additionally, we

evaluate FGINN (Mishkin, Matas, and Perdoch 2015), a variation of SNN that considers the geometry of

keypoints. Recent methods such as AdaLAM (Cavalli et al. 2020) and SMNN (Jin et al. 2021), as imple-

mented in Kornia (Riba et al. 2020), are also included in the comparison. We also include the preemptive

feature matching strategy (Wu 2013), which matches top-scale features across images to accelerate multi-

view matching. As a hierarchical matching baseline with a ®(ny/n) time complexity, we include feature

matching guided by matches of top-scale features, referred to as Hierarchical Nearest Neighbors (HNN).

For linear-time approximate NN methods, we evaluate the widely-used FLANN (Muja and Lowe 2009),

which is tree-based, and the state-of-the-art HNSW (Malkov and Yashunin 2018), which is graph-based. To

ensure a fair comparison, all methods were applied to the same keypoints with identical descriptor vectors,

followed by identical post-processing steps, including guided matching. For robust estimation, we used

GC-RANSAC (Barath and Matas 2018). All methods were tuned for optimal performance, except for NN

and MNN, which do not require parameter tuning.

Table 3.1. Homography Estimation Results of GGNN and Other Methods

Failure Percentage

Dataset Image | NN MNN SNN FGINN AdaLAM SMNN|HNN GGNN |FLANN HNSW

Pairs (2004) (2015) (2020) (2021) (Proposed) | (2009) (2018)
Oxford* Bikes 36 |00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Oxford* Trees 36 2.8 0.0 0.0 0.0 0.0 0.0 2.8 2.8 0.0 0.0
Oxford* Leuven 36 |00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Oxford* UBC 36 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Oxford* Graff 36 |27.8 36.1 25.0 25.0 33.3 30.6 | 50.0 25.0 41.7 33.3
Oxford* Wall 36 139 16.7 139 11.1 11.1 11.1 | 22.2 11.1 36.1 16.7
Oxford* Bark 36 (694 639 66.7 69.4 66.7 66.7 | 72.2 63.9 75.0 69.4
Oxford* Boat 36 [55.6 52.8 444 47.2 47.2 44.4 | 55.6 47.2 52.8 52.8
Oxford* 288 |21.2 21.2 18.8 19.1 19.8 19.1 | 253 18.8 25.7 21.5

| Homogr-Random | 640 [ 81 72 6.7 6.7 12.5 6.9 |18.0 66 | 225 8.9 |
HPatches Illum 285 |10.5 8.4 7.4 8.8 11.2 8.8 18.9 10.2 18.2 10.5
HPatches View 295 [18.0 159 156 14.9 17.6 14.6 | 33.2 16.3 329 19.3
HPatches 580 (143 122 11.6 11.9 14.5 11.7 | 26.2 13.3 25.7 15.0

|  Time Complexity | 0(n?) | O(n+/n) | O(nlogn) |
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The results indicate that GGNN achieves Pareto optimality in the efficiency-accuracy trade-off,
meaning that no other method surpasses GGNN in both efficiency and accuracy. In other words, for its level
of efficiency and beyond, GGNN demonstrates the highest accuracy across all three datasets. Furthermore,
GGNN outperforms both NN and AdalLAM on all three datasets while maintaining greater efficiency.

Figure 3.4 presents the intermediate results of the proposed method on a selected image pair,
demonstrating how the refining process enhances the rate of correct matches at both the group and feature
levels. Figure 3.5 provides sample results, showcasing both successful matches and various types of failures.

Table 3.2 presents the results of the ablation study, wherein each column represents the proposed
method with some components intentionally omitted. The ablation study reveals that performance deterio-
rates when certain components are removed or modified, highlighting the significance of these components
in the overall effectiveness of the proposed method. This suggests that each component contributes positively
to the model’s performance and that their inclusion is essential for achieving optimal results. Notably, the
results indicate that the removal of NMS led to the largest decrease in performance across all three datasets,

underscoring its critical importance in maintaining high accuracy.

Table 3.2. Ablation Study

Non-maximum suppression v v v v v
Pyramid for regions v v v v v
GGNN Region match elimination v v v v v
Local geometric verification v v v v v
Guided matching v v v v v
Oxford™ Bikes 00 | 00 00 0.0 00 0.0
Oxford* Trees 2.8 28 28 00 28 28
Oxford* Leuven 00 | 00 00 0.0 00 0.0
Oxford* UBC 00 | 00 00 00 00 0.0
Oxford™ Graff 25.0 | 41.7 306 333 27.8 36.1
Oxford™ Wall 11.1 | 194 167 167 194 16.7
Failure Percentage Oxford* Bark 639 | 66.7 667 694 694 639
Oxford* Boat 472 | 52.8 556 556 556 528
Oxford* 18.8 | 229 215 219 219 215
Homogr-Random 6.6 | 120 72 67 89 89
HPatches Illum 10.2 | 13.0 133 102 13.7 123
HPatches View 163 | 275 176 16.6 22.0 183
HPatches 13.3 | 203 155 134 179 153
Time Complexity I O(nn) |

3.3. Discussion

For image matching, increased field-of-views captured in increased image resolutions necessitates
a quadratic increase in keypoints due to the two-dimensional nature of images. Our research introduces

a novel approach, proposing an image matching method that circumvents the exhaustive NN search in
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(d) Refined feature matches

Figure 3.4. Intermediate Results from GGNN: (a) Initial region matches: Groups are matched with the
most similar groups from the other image. Successful matches, indicated by blue lines, have a sufficient
number of common members. (b) Refined region matches: Low-quality region matches are discarded.
(c) Initial feature matches: Members are matched with the most similar members of the matched groups.
Blue lines indicate matches with low localization errors. (d) Refined feature matches: Within each group,
geometrically inconsistent matches are discarded. A spectrum of colors from blue to red is used to indicate
the quality of matches, with blue representing the best matches and red representing the worst.
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Figure 3.5. Sample Results From GGNN: More successful outcomes shown on the left and less successful
ones on the right. Failures occur due to high reprojection errors in matching (indicated by red matches),
or when the number of matches is not sufficiently high, or when matched features are not spatially well-
distributed.

descriptor space for each keypoint. Central to this approach is the concept of first matching clusters of
spatial features, and subsequently matching individual features within these matched clusters. This strategy
leverages the spatial relationships between features, enhancing the efficiency of the method. Empirical
evaluations support the effectiveness of this approach.

The current version of our proposed feature matching process is not feature-agnostic, which could

restrict its compatibility with future feature extractors. However, most extractors can be adapted to yield high-
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dimensional descriptors. In higher dimensional spaces, these descriptors tend to be pairwise orthogonal,
fulfilling our primary requirement. Moreover, using a single descriptor extractor generates vectors with
components less correlated than those in concatenated descriptors. This reduction in correlation enhances
both discriminability and orthogonality, making our approach potentially more effective than the currently
evaluated method for descriptor extraction.

The computational overhead resulting from the preparation of groups is asymptotically negligible.
In practice, even if the feature count is small and overhead becomes significant, the extra computation is
only performed for all images, not for all image pairs. Practically, even in cases where the feature count is
low and overhead appears more significant, the additional computation is applied to all images individually
rather than to each pair of images. Consequently, as images are repeatedly used (e.g., in multi-view image

matching), the extra computational cost diminishes rapidly.
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CHAPTER 4

EXTENSIONS AND IMPROVEMENTS

In the previous chapter, we proposed a hierarchical approach to image matching, detailing a method
that utilizes this approach along with the necessary pre- and post-processing steps. We demonstrated its
efficiency and accuracy in solving the problem of homography estimation across image pairs.

In this chapter, we extend and enhance our work in several independent dimensions. First, we
generalize the number of regions (and thus spatial groups). Next, we explore an alternative to Group-Guided
Nearest Neighbors (GGNN) to increase efficiency. We then propose a quick evaluation method for image
matchers, useful for hyperparameter optimization. Additionally, we introduce a more accurate warping
method compared to classical warping, which can generate more realistic image pairs from captured images.
Finally, we extend our approach from planar to 3D scenes and evaluate the proposed method on pose

estimation.

4.1. Pyramid of Grids for Hierarchical Regions

The proposed feature matching method can be formulated as a general framework in which g groups
are matched across images and then g times ¢ members are matched against ¢ members of the matched
group. This framework requires g> + gc> descriptor comparisons in total. It is sensible to constraint the
relationship between these variables to satisfy the equation ¢ = n/g. This way g groups of ¢ features will
have n features in total. (Note that this does not mean all features are covered as there are overlapping
features between groups.) Applying this constraint the number of comparisons becomes g> + n*/g. For
simulating the conventional NN search, there must be only g = 1 group and thus 1 + n> comparisons (or
simply n? by avoiding the unnecessary group matching) must be performed. Whereas, the proposed method
constructs g = /n groups and requires only n + n+/n comparisons. Within this framework it is possible
to minimize the computational cost beyond the proposed setting: the minimum number of comparisons is
3v2n?/ (ZW), which occurs when there are g = Va2 /2 groups. Instead of using the proposed setting,
one can select an appropriate integer g automatically from the range [1, \Vavn? /2] depending on the time
budget. The number of total comparisons decreases monotonically within this range.

The previous chapter focused exclusively on 64 groups, using n = 4096 and setting g to \n = 64.

To vary the computational cost for a fixed n and to apply the previously proposed setting of g = +/n for
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different n values, a generic formulation for generating regions is required.

4.1.1. Computation of Regions

Our image regions are arranged in grids, with these grids stacked as levels of a pyramid. Below
is the formulation for computing the pyramid for a given number of regions. Each region is defined by the
group of features within it. We use the terms “region count” and “group count” interchangeably, as they
correspond one-to-one.

The function pyr(g) is defined to compute a pyramid for a given number of groups g. This function
constructs a set of integers that satisfy a series of specific conditions, ensuring the set is uniquely determined

for each g. We define the function pyr(g) as a piecewise function:

{1} ifg=1
5o
xeX
leX
pyr(g) = N
first| { X CZ" vy, € XVao € X (12 <x] = — > V2) ifg>1
X2
X1
Vx € X ((V)Q EX(X1 €£x) V(@A eX(xa<x A x— < 2\/5))
2
vg' < g (Ipyr(g"l < IX])

where first(sets) selects the lexicographically first element among the sorted sets.

For example, pyr(1) = {1}, pyr(5) = {1, 2}, pyr(14) = {1,2,3} and pyr(21) = {1,2,4}. It holds
that X vepyr(g) x% = g for all g if pyr(g) is not an empty set.

The function first(sets) selects the set whose smallest number is the smallest among the sets. If there
are multiple candidates, it selects the one whose second smallest number is the smallest among the candidates,
and so on. The smallest number for which there are multiple possible pyramids is 247. pyr(247) is equal to
{1,2,3,5,8, 12} rather than {1,2,3,8, 13}, as first({{1,2,3,5,8,12},{1,2,3,8,13}}) = {1,2,3,5,8, 12}
because 1 =1,2=2,and 3 =3, but5 < 8.

The semantics of these sets is that each level x € pyr(g) contains x? identical circles arranged in
a grid with x rows and x columns. For instance, pyr(14) = {1, 2, 3} indicates that there are 3 levels in the
pyramid for 14 regions, with 1 x 1 = 1 circle, 2 X 2 = 4 circles, and 3 X 3 = 9 circles. If the value of the
function is the empty set as in pyr(2) = {}, this means that such a pyramid cannot be constructed. Figures

4.1 and 4.2 collectively illustrate pyr(g) where 1 < g < 200.
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Note that 1 is always an element, meaning that there must be a global region. For every pyramid,
the ratio of two adjacent levels is a number between V2 and 2v2. For example, pyr(14) = {1,2, 3} because
2/1 is greater than V2 and less than 2V2, and 3/2 is greater than V2 and less than 2v2. This constraint
distributes regions well in scale space. The last condition ensures the number of levels is monotonically
increasing as the number of regions increases.

Due to the recursive definition, we compute the values for all possible region numbers in ascending
order up to an arbitrary upper bound. Once these values are computed, we implement the function for
determining the regions using a simple lookup table.

For some region counts, the function is undefined. We believe the defined values are sufficiently
dense, allowing the largest g value less than the required value, for which pyr(g) is defined, to be used.
However, if necessary, a pyramid with any number of regions can be created. To achieve this, identify the
smallest g value greater than the required number for which pyr(g) is defined. Then, remove the excess
regions from the densest level, which is guaranteed to have more regions than required for removal. For
example, pyr(100) is not defined. Instead, one can use pyr(94) = 1,2,5,8, or pyr(102) = 1,2,4,9 and

remove 102 — 94 = 8 regions from the 9 X 9 = 81 grid.

4.1.2. Evaluation

In the experiments, we use the same pipeline as in the previous chapter. However, we omit region
match elimination (refining region matches) and local geometric verification (refining feature matches) to
ensure a fair comparison across varying numbers of regions. Fig. 4.3 shows the results obtained by varying
the number of groups. We aim at minimizing both the number of comparisons and the failure percentage.

For n = 4096 features, the number of vector comparisons g2 +n? /g is 16,777,217 for g = 1 group,
266,240 for g = 63 groups, and 123, 855 for g = 203 groups. This demonstrates a significant difference
between the NN algorithm and the proposed GGNN setting, although the difference between the proposed
GGNN setting and the absolute minimum is less pronounced. We observe that g = +/n generally provides
a good balance between speed and performance, at least for n = 4096 using our features on our datasets.

However, this parameter can be optimized for specific features, datasets, applications, and time limits.

4.2. Efficient Image Matching with Group-Tested Nearest Neighbors

The GGNN approach to feature matching involves first matching groups of features and subse-

quently matching individual features within those matched groups. In this section, we propose an alternative
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Figure 4.3. Impact of the Number of Groups: The plot visualizes the impact of different number of groups g
while keeping their cardinality at ¢ = n/g for n = 4096. The proposed setting is calculated as g = v/n = 64.
Horizontal lines mark the performance level of the proposed setting.

approach called Group-Tested Nearest Neighbors (GTNN).

4.2.1. Group-Tested Nearest Neighbors

Group-Tested Nearest Neighbors (GTNN) is a two-step matching algorithm that parallels the GGNN
methodology. However, it initially matches individual features to feature groups, and then matches these
features to the members within the corresponding groups.

Assuming the existence of 4/ groups, each containing v/n features—consistent with the proposed
GGNN framework—the time complexity for matching all n features to feature groups of the other image
is ®(n+/n). This step yields n feature-group matches. For each of these matches, comparing a feature to
the members of the matched group requires @(+/n) time, resulting in a total of ®(n+/n). Thus, the overall
complexity remains ©(n+/n), identical to that of GGNN.

In scenarios where matching between features and groups is performed bidirectionally or multiple
nearest neighbors are selected, the number of feature-group matches may exceed n. Conversely, if filtering
techniques such as the ratio test or thresholding based on absolute distances are applied, the number of
matches may decrease. Regardless of these variations, the asymptotic complexity does not increase.

Unlike GGNN, GTNN allows for a further reduction in time complexity to ®(n) by considering
only the top v/ features on the side of the individual features, even if the grouped features still consider all
n features. This linear time complexity can also be achieved with NN when both sides are limited to the top

/n features, which are the features with the highest response. It is important to note that this approach is
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different than detecting v/n features and matching them. We use efficient guided matching with all methods,
allowing the use of all n features once the transformation is coarsely estimated.

Figure 4.4 illustrates and compares the linear time adaptation of the quadratic NN approach with
the linear time version of GTNN. Unlike NN variations and GGNN, GTNN is asymmetrical in terms of the
types of matched items. However, similar to the other methods, it can be performed bidirectionally, making

the overall algorithm symmetrical.

NN (Linear-time adaptation)

O(n)

Perform n such comparisons to

obtain y/n best feature-feature matches.

/1 such features y/n such features
in the left image in the right image
GTNN

O(n) +Vn - ©(vn) = 6(n)

Perform n such comparisons to

([ J
obtain /n best feature-group matches.
y/n such features /1 such groups
in the left image of v/n features

in the right image

Then for each of the v/n feature-group matches:

Perform v such comparisons to

obtain 1 best feature-feature match.

y/n such features
in the group

(v/n feature-feature matches are obtained in total.)

Figure 4.4. Feature Matching in ®(n) Time: The GTNN algorithm differs from the NN algorithm by
filtering features in the right image using group testing instead of relying on response scores. For each
feature in the left image, GTNN dynamically determines a group of /n candidate features from the right
image for matching. In contrast, NN searches for a match from the fixed set of v/ top features in the right
image for every feature in the left image.
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4.2.2. Evaluation

We use the same datasets and pipeline as described in Chapter 3. However, we do not perform
local geometric verification since it was defined for group-group matches, which are not applicable here.
Due to the low number of matches, we utilize both the nearest neighbors and the second nearest neighbors.
Although this approach significantly increases the rate of mismatches, the robust estimation can effectively
manage them given the small number of matches.

We refer to the linear time adaptation of the NN algorithm, achieved by reducing the number of
features to their square root, as Linear Nearest Neighbors (LNN). LNN employs the same preprocessing and
postprocessing steps as GTNN. Other methods that filter the NN show worse performance in our experiments
compared to the vanilla NN. Since the number of matches is already small, global geometric verification
applied for robust estimation is sufficient and performs better without these prefiltering techniques. To save
space, we omit these methods in the results and only present LNN as the baseline.

Table 4.1 shows the experiment results. The GTNN algorithm outperforms LNN on all three
datasets, though the margins are small in two of them. Despite this, both linear time algorithms perform
significantly worse than the other algorithms. The positive aspect is that we can almost always detect if
we fail to estimate the correct transformation, even without knowing the ground truth. The number of
consistent matches found indicates whether the result is likely due to pure chance. Therefore, GTNN can
be used initially, especially if some image pairs are easier to match or if matching a subset of image pairs is

sufficient, as in multiview cases. More complex algorithms can then be used only if needed.

Table 4.1. Homography Estimation Results of GTNN and Other Methods

Failure Percentage
Dataset Image| NN MNN SNN FGINN AdaLAM SMNN|HNN GGNN |FLANN HNSW |LNN GTNN
Pairs (2004) (2015) (2020) (2021 (Proposed) | (2009) (2018) (Proposed)

Oxford* Bikes 36 |00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Oxford* Trees 36 |28 0.0 0.0 0.0 0.0 0.0 2.8 2.8 0.0 0.0 |250 8.3
Oxford* Leuven 36 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 139 2.8
Oxford* UBC 36 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Oxford* Graff 36 |27.8 36.1 250 25.0 33.3 30.6 | 50.0 25.0 41.7 333 (472 36.1
Oxford* Wall 36 139 167 139 11.1 11.1 11.1 | 22.2 11.1 36.1 16.7 |44.4 444
Oxford* Bark 36 1694 639 66.7 694 66.7 66.7 | 722 63.9 75.0 69.4 |75.0 80.6
Oxford* Boat 36 |55.6 52.8 444 472 472 444 | 55.6 47.2 52.8 52.8 | 52.8 50.0
Oxford* 288 [21.2 212 18.8 19.1 19.8 19.1 | 253 18.8 25.7 215 | 323 27.8
| Homogr-Random | 640 | 8.1 7.2 6.7 6.7 12.5 6.9 | 18.0 6.6 | 22.5 8.9 | 30.0 29.8
HPatches Illum | 285 |10.5 8.4 7.4 8.8 11.2 8.8 18.9 10.2 18.2 10.5 | 52.6 31.2
HPatches View 295 [18.0 159 15.6 14.9 17.6 14.6 | 33.2 16.3 32.9 19.3 | 56.3 48.1
HPatches 580 [14.3 122 11.6 11.9 14.5 11.7 | 26.2 13.3 25.7 15.0 | 54.5 39.8

|  Time Complexity | 0(n?) | O(n+n) | O(nlogn) | O(n)

Please note that there remains a @(n+/n) time complexity for computing exact spatial groups before
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matching the features. This preprocessing step prevents the overall time complexity from reducing to linear
time. However, the necessity for linear time complexity arises particularly in the multi-view scenario, where
a set of images are matched against each other. In such cases, there can be @(m?) potential image pairs
for m images. Consequently, image-based computations are performed m times, while image pair-based
computations are required ®(m?) times. Therefore, if the number of image pairs to match exceeds m+/n,
the amortized time complexity, including the preprocessing of feature groups, remains linear. Conversely,
if this condition is not met and a reduction in complexity is still desired, approximate grouping methods
such as locality-sensitive hashing (Indyk and Motwani 1998; Gionis, Indyk, Motwani, et al. 1999; Jafari

et al. 2021) or grid-based methods can be employed to achieve linear time complexity.

4.3. Quick Evaluation of Image Matching Pipelines

‘We observe that the performance of an image matching pipeline can be efficiently predicted without
running it on the entire dataset. For instance, the pipeline can be initially tested on a medium-difficulty
problem. If it succeeds, it can then be applied to a more challenging problem,; if it fails, it can be applied
to an easier problem instead. This approach is particularly useful when pipelines have alternative modules
and multiple parameters, leading to a combinatorial explosion. In such cases, quick evaluation is essential
for hyperparameter optimization on a validation set.

To address the problem of quick evaluation, we propose using a decision tree regressor (Kingsford
and Salzberg 2008; Loh 2011, 2014; Breiman 2017). Training data for these quick evaluation models can
be generated by running random pipelines on the full validation set, making this a meta-learning problem
where the training occurs on the validation set. The resulting tabular data consists of rows representing
different pipelines (image matchers), columns representing individual problems (image pairs to match), and
values indicating how each pipeline performs on each problem.

Image matching algorithms generate a numeric error instead of a simple success or failure, enabling
more precise performance predictions. Consequently, the values in the table are numeric, representing the
Relative Average Corner Error (RACE), which is the average corner error divided by the image’s diagonal
length. It is important to note that if a matcher completely fails to predict a transformation, the error is
infinite, and thus the table may contain infinite values. The final column in the table represents the failure
percentage across the entire dataset, based on an arbitrary failure tolerance as detailed in previous chapters.

For this study, we consider values above 0.01 as failures. Figure 4.5 illustrates the dataset.
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Image Pair 1 | Image Pair 2 Image Pair j Overall
Matcher 1 RACE, RACE, » RACE, percentage|
Matcher 2 RACE; RACE; RACE,; ; percentage;
Matcher i RACE; RACE; » RACE; ; percentage;

Figure 4.5. Tllustration of the dataset for learning and testing quick evaluation: The objective is to predict
overall performance, indicated by the failure percentage (last column, ranging from 0 to 100), using
performance data from selected problems (other columns, represented by the relative average corner error,
ranging from O to co). This method enables estimation of the failure percentage without calculating
all performance values. The failure percentage is determined based on an arbitrary failure tolerance.
The training-testing split must be performed on the rows. This is a meta-learning problem because the
components of the matchers are also typically being learned.

4.3.1. Methods for Learning Quick Evaluation

Classification and Regression Trees (CART) (Breimann et al. 1984) is a widely used decision tree
learning algorithm. Existing implementations, such as Scikit-Learn’s (Pedregosa et al. 2011) ‘Decision-
TreeRegressor’, cannot handle infinite values. To address this, we implement a decision tree regressor from
scratch that minimizes mean squared error (MSE) at each split. We verify its correctness by running tests
both on the custom implementation and the Scikit-Learn implementation, and comparing the results. We
then modify the implementation to change the operator for the split condition from ‘<’ to ‘<’. This simple
modification enables the algorithm to handle data containing positive infinities. The rationale is that the
midpoint between a finite number and positive infinity is calculated as infinity, and the ‘<’ operator can then
split the data into finite numbers and infinities when the threshold is set to co.

We introduce another important modification to the learning algorithm by adding a monotonicity
constraint (Potharst and Feelders 2002) for splitting the tree: the predictions must be monotonically in-
creasing from the left-most leaf to the right-most leaf. This is because it is never indicative of superior
performance when an algorithm performs worse on an individual problem, even if it contradicts part of the
training data considered at the time. This means that the rule ‘if feature < threshold then predict x,
otherwise predict y’ can be added to the tree only if x < y. This constraint helps to avoid overfitting. We
refer to the resulting decision tree as a Monotone Decision Tree (MDT). Figure 4.6 shows a decision tree
learned on Oxford* homography estimation dataset.

Note that the runtime for condition checks is negligible compared to running a pipeline on an image
pair. Nearly all the time needed for inference is spent calculating the values of the required features. As
a result, reusing the features in a path from the root to a leaf does not increase the runtime of the quick

evaluation. Therefore, we propose an improvement to MDTs for this problem: We increase the “maximum
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bark, 3 < 0.0309

boat; 4 < 0.0607 treess.g < oo

25.620 | | 34.325

Figure 4.6. Example decision tree for quick evaluation: This tree predicts an image matcher’s performance
on the Oxford* dataset, which contains 288 image pairs, based on evaluations of only two image pairs.
Although the model considers three features in total, the number of required evaluations equals the depth of
the tree, which is 2, assuming lazy evaluation (i.e., features are computed only when needed). For instance,
if the pipeline in question has a RACE of 0.01 when estimating the homography matrix between the 2" and
the 3™ images of the ‘bark’ scene, and has a RACE of 0.1 when estimating the homography matrix between
the 1t and the 4" images of the ‘boat” scene, the model predicts its overall failure percentage as 25.62%.
Note that the tree is monotone, with predictions in ascending order from left to right.
depth” but constrain the tree to perform splits solely based on the features that are already used in that path
after reaching the original maximum depth. We refer to the resulting decision tree as a Feature-Efficient
Monotone Decision Tree (FEMDT). Similar ideas related to learning based on costly features can be found
in the machine learning literature (Reyzin 2011; Xu et al. 2014; Peter et al. 2017; Janisch, Pevny, and Lisy
2019; Erion et al. 2022).

Decision forests (Rokach 2016) consist of a set of decision trees whose predictions are averaged
(or determined by majority voting in the case of classification). Like other model ensembles, which are
generally more robust than individual models, decision forests are generally more robust than individual
decision trees. Therefore, we propose using a feature-efficient variant of random forests (Biau and Scornet
2016; Parmar, Katariya, and Patel 2019) for quick evaluation. Since decision trees can be used for feature
selection, we first build a decision tree to obtain feature importances, then use the most important features.
The number of selected features correlates with the inference time budget. Increasing the number of trees in
the ensemble or their maximum depths does not increase the inference runtime beyond the time needed for

calculating all the selected features. We refer to this type of random forest as a Feature-Efficient Random

Forest (FERF). Note that these are regular random forests but trained after feature selection.
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4.3.2. Evaluation

Table 4.2 shows the most important features for quick evaluation of Oxford* dataset. These values
were calculated using 500 random image matching pipelines obtained with random modules (such as a feature
matching algorithm) and random parameters (such as a threshold). A feature’s importance is calculated
based on its contribution to the model, considering that more important features are already in use. This
diminishes the returns with each additional feature, which explains the significant difference between the

first and second highest importance values, and not necessarily their independent predictive powers.

Table 4.2. Feature Importances for Quick Evaluation

1 2 3 4 5 6 7
Feature bark, 3 boat;4 wallg, graff4s walls, Dboatss leuvensg
Importance | 0.737 0.141 0.040 0.016 0.016  0.006 0.006

Table 4.3 presents a comparison of the learning algorithms tested using 10-times repeated 10-fold
cross-validation. Notably, even the simplest solution, MDT, predicts the overall performance of an image
matching pipeline at one or two orders of magnitude faster than exhaustive evaluation, with relatively small
error. For example, MDT can predict the failure percentage approximately 100 times faster with an average
error of about 1.4%. The feature-efficient variant, FEMDT, further improves performance over the standard
version. We show two versions: FEMDT), which adds a single cost-free level at the bottom of MDT, and
FEMDT,, which adds two such levels. While more levels can be added, the models will overfit after a
certain number of levels. The ensemble variant, FERF, with 3 decision trees, has three versions: FERF; and
FERF,, with one and two extra cost-free levels respectively, and FERFoo, with unbounded depth. FERFoo

outperforms all other methods at every cost level.

Table 4.3. Prediction Performance of Quick Evaluation Models

Number of Approximate Root Mean Squared Error

Evaluations Speedup MDT FEMDT; FEMDT, FERF, FERF; FERF, FERF,
1 288x 2.992 2.719 2.703 2.951 2.040 1.530 0.874
2 144 x 1.804 1.534 1.510 2.028 1.533 1.390 0.880
3 96x 1.420 1.342 1.296 1.541 1.389 1.285 0.899
4 72x 1.266 1.205 1.385 1.385 1.281 1.148 0.921
5 58x 1.167 1.145 1.132 1.274 1.134 1.077 0.888
6 48x 1.129 1.101 1.084 1.157 1.085 1.040 0.900
7 41x 1.081 1.072 1.066 1.076 1.082 1.065 0.899

Unlike other methods, with FERF,, the error does not decrease as the number of evaluations

increases. Interestingly, the best performing model is also the fastest, suggesting that, at least for Oxford™,
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testing a pipeline on a single image pair effectively reveals its quality. It is important to note that these results
may vary not only with different image pair datasets but also with different pipelines. Figure 4.7 shows
the histogram of the target variable values for the generated image matching pipelines with the selected
image pair dataset. When the distribution changes, the results are expected to change. However, the same

methodology can be applied to any image pair dataset and any set of pipelines.

120 -

100+

<o
o

Frequency
[=)]
o

40

201

20 25 30 35 40 45
Failure Percentage

Figure 4.7. Distribution of failure percentages in the quick evaluation dataset: Among the 500 pipelines,
the mean failure percentage is 24.1, with a standard deviation of 5.6. The failure percentages range from a
minimum of 17.7 to a maximum of 46.5. A simple model that always predicts the mean value of 24.1 would
result in an RMSE of 5.6.

In the previous chapter, we demonstrated that GGNN outperformed all other methods, including less
efficient ones, achieving a failure rate of 18.8% on the Oxford* dataset. By employing the quick evaluation
model FERF,, with single evaluation, we conducted hyperparameter optimization through approximate
evaluations for randomly selected parameters. This process was completed in significantly less time than
required to evaluate a single pipeline on the full dataset. Using the optimized parameters identified through

this approach, we further reduced the failure rate to 17.7%, as confirmed by a full dataset evaluation.

4.4. Accurate Image Warping for Improved Dataset Generation

Image warping functions are essential components of any image processing toolbox. These func-
tions apply geometric transformations, such as projective transformations, to images. In digital images,

intensity values are located on discrete coordinates. When a pixel is shifted by a non-integer amount,

37



interpolation is required, resulting in an approximation. These approximations typically smooth the image,
causing high-frequency regions such as edges, corners, and textures to become blurred. The loss of informa-
tion in the image warping process becomes evident when the resultant image differs from the original after
a complete cycle of periodic transformations (e.g., applying a 30-degree rotation 12 times) or the sequential
application of forward and inverse transformations (e.g., downscaling by a factor of 2 followed by upscaling
by a factor of 2).

Super Resolution (SR) encompasses a class of techniques that generate a high-resolution image
from one or more low-resolution images. It is trivial and virtually free to generate large datasets of low-
and high-resolution versions of images, simply by downscaling any unsupervised image dataset. Thanks
to this, many deep learning-based single-image SR models have been proposed. The first proposed model
(Dong et al. 2015) applied image restoration to traditionally upscaled images. Then many specialized
neural network architectures (Xintao Wang et al. 2018; Y. Wang et al. 2018; Xintao Wang et al. 2021;
Zhang et al. 2021) were specifically designed for upscaling images accurately, and repeatedly pushed the
state-of-the-art further.

In this section, we propose a solution to the problem of image warping by using data-driven super
resolution (SR) as a black box. As far as we know, this application of SR has not been previously documented
in the literature. We employ this image warping method to realistically generate synthetic pairs of single

captured images for a homography estimation dataset.

4.4.1. A Method for Accurate Image Warping

Interpolation for intensity values is almost always required for image warping. The exceptions are
specific cases such as combinations of integer translations, rotations by multiples of 7/2, and downscaling
along an axis by an odd integer factor. Consequently, image warping almost invariably leads to information
loss.

No free lunch theorems state that the average performance of optimization algorithms across all
possible problems is equivalent (Wolpert and Macready 1997). This implies that among single-image
SR techniques (e.g., deep learning-based models (Dong et al. 2015; Xintao Wang et al. 2018; Y. Wang
et al. 2018; Xintao Wang et al. 2021; Zhang et al. 2021)), non-adaptive interpolation methods (e.g.,
bilinear interpolation), and adaptive interpolation methods (e.g., edge-directed interpolation (Allebach and
Wong 1996; Li and Orchard 2001; Tam, Kok, and Siu 2010)), none is inherently superior for randomly
synthesized images. Even a simple constant function used for interpolation is equally successful on average.

Fortunately, the laws of physics impose local consistency and other properties on real-world objects, making
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some techniques superior for real images (Lin, Tegmark, and Rolnick 2017). Deep learning-based SR
techniques leverage extensive datasets of example images to learn natural priors and develop awareness
of both local and global patterns. These techniques generally produce better approximations than other
upscaling methods, except in the case of intentionally designed adversarial examples.

Warped images can be used as data augmentation for training neural networks, including SR
models. We propose the opposite: using SR models to warp images, resulting in more accurate estimations
than traditional methods such as bicubic interpolation. This can be achieved by first applying SR to the
image, then warping the super-resolved image using the corresponding high-resolution transformation, and
finally downscaling the result.

For any uniform upscaling matrix U and a transformation matrix 7" (such as a homography matrix),
there is another transformation matrix 7” (also homography matrix if 7' is a homography matrix), such
that Tp = U~!T'Up for all 2-dimensional points p represented in homogeneous coordinates. In fact,
T’ = UTU~!. This means that applying U~!7T’U to an image coordinate is equivalent to directly applying
T. However, the former approach can leverage SR algorithms for upscaling the image. The upscaled image
essentially corresponds to denser intensity values in the original resolution. Denser values lead to better
interpolation, assuming the upscaling is more accurate than the simple interpolation and the downscaling
step at the end does not negate the accuracy gains achieved at the high resolution. Figure 4.8 illustrates both
the direct approach and the proposed approach to the image warping problem, along with the ideal result.

High-resolution images

T'(S(LR)) ¢—— S(LR) Ry — 7 1R

T T
D S D
IT
D(T'(S(LR))) T(LR) D(T'(HR))
Proposed result Classical result Target

Low-resolution images

Figure 4.8. Accurate Image Warping: The original warping function (7°) required to transform the original
image, the calculated function (7) that mimics 7~ in high resolution, the super resolution algorithm (S) that
accurately upscales images, and the downscaling operation (D) that conventionally downscales images are
all represented as functions. LR represents the original image, and 'R represents the hypothetical perfect
high-resolution version of £R. In this context, the target represents the ideal warped image. The classical
result is the outcome of direct warping, while the proposed result is a better approximation of the target than
the classical result, assuming S and D produce accurate results. The target is typically unknown, as it is
not possible to calculate HR from LR. However, it is possible to use a given image as H{R and obtain LR
by downscaling it. This allows us to confirm that the similarity between the proposed result and the target
is higher than that between the classical result and the target.
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For tasks like homography estimation, it is common practice to train models and evaluate algorithms
on large datasets of artificially transformed real images. In the previous chapter, we generated such a dataset
using images from the Homogr dataset. The proposed image warping method can be employed to generate
these datasets in a more realistic manner. While recent deep warping models (Son and Lee 2021; Xiao
et al. 2024) offer an alternative approach, our method has the advantage of requiring each image to be
super-resolved only once, regardless of the number of different transformations applied. This makes our
approach highly efficient for generating a vast number of image pairs, potentially even an infinite number,

from single high-resolution images.

4.4.2. Evaluation

We generated a dataset of 320 image pairs using the Homogr images. As the baseline warping
method, we employed bicubic interpolation. For the proposed warping approach, we used BSRGAN (Zhang
et al. 2021) for super resolution with a scale factor of 2, followed by bicubic interpolation for warping in
high resolution and subsequent downscaling.

Another challenge with image warping for synthetic dataset generation, beyond interpolation issues,
is that image resolutions significantly decrease because the warped images must be cropped to the largest
inscribed rectangles. These rectangles are considerably smaller than the original images, particularly when
the transformations are more extreme. For this reason, it is usually sensible to upscale the warped images
and use them as the image pair dataset. We follow this approach as well. We upscale the resultant images
for the bicubic warping method and omit the downscaling step for the proposed warping method.

Figure 4.9 shows sample patches from warped images. The proposed method’s results appear
significantly sharper based on qualitative visual inspection.

Table 4.4 shows the performance of GGNN on warped images using both methods, as well as on
the high-resolution versions. It is important to note that the results for the low-resolution and high-resolution

datasets are not directly comparable, as high-resolution datasets present easier problems.

Table 4.4. Homography Estimation Results on Warped Images

Bicubic Warping Proposed Warping | Bicubic Warping (2x) Proposed Warping (2x)

Failure Percentage 28.4 26.9 7.2 2.5

The results suggest that the proposed method is a better simulator of camera movement in the real
world compared to the widely used method in the community. This approach can potentially be applied to

other image warping applications as well.
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Figure 4.9. Sample Patches from Warped Images: The image patches above demonstrate the results of
the proposed warping method, whereas the image patches below show the results of the bicubic warping
method.

4.5. Generalization to 3D Scenes

In this section, we extend the application of our hierarchical image matching method from planar
scenes to three-dimensional (3D) scenes, leveraging the principles of epipolar geometry. While in planar
scenes or when objects are sufficiently far from the camera, estimating a homography matrix remains
meaningful, general 3D cases require a more complex approach. By utilizing the concepts of the essential
matrix and epipolar geometry, we aim to demonstrate that our method can be effectively generalized to

handle 3D scenes, providing accurate pose estimation and robust matching performance.

4.5.1. Pose Estimation with Hierarchical Image Matching

In three-dimensional scenes, pose estimation becomes crucial for understanding the spatial rela-
tionships and relative positioning of objects. To achieve this, we employ the concepts of epipolar geometry,

which are fundamental to 3D computer vision.



Figure 4.10 illustrates epipolar geometry. If the camera intrinsics are known, the relative pose
(position and orientation) of the two cameras can be represented by an essential matrix; otherwise, it is
represented by a fundamental matrix. However, there are degenerate cases where the essential or fundamental
matrix cannot be accurately estimated, such as when the scene is planar, when there is pure rotation without

translation, when the cameras move parallel to each other, or when one camera is directly behind the other.

3D scene

& e; Baseline

Figure 4.10. Epipolar Geometry: C; and C, are the centers of two cameras (or a single camera at two
different times). The baseline is the line that connects these two camera centers. Terms like “wide-baseline
stereo” refer to the length of the segment C;C,, indicating that the distance between C; and C; is relatively
long. Image planes are the 2D projections of the scene as seen by the cameras. Although these planes are
theoretically infinite, the cameras capture only a finite portion of the scene within their field of view. The
epipoles e; and e, are the projections of each camera center onto the image plane of the other camera and
they lie on the baseline. Depending on the field of view, the epipoles can be outside the actual image. P is
an arbitrary 3-dimensional point in the scene. An epipolar plane is defined by a 3D point and the optical
centers of the two cameras. The projection of P on the left image plane is P; and on the right image plane
is P,. If we know the relative pose of the cameras, and that P; and P, correspond to the same point, we can
locate the 3D point P, as the lines C;P; and C,- P, intersect at P. In practice, due to localization errors, the
lines may not actually intersect, but an approximate intersection can be calculated. Epipolar lines are the
lines on an image plane that pass through the epipole and all possible locations of a point. For instance, the
epipolar line corresponding to P; lies on the right image plane and passes through the epipole e, and the
projected point P,.. If we know the relative pose of the cameras and want to locate P,, the corresponding
point to P; in the right image, it can be anywhere on the corresponding epipolar line. This uncertainty
arises because the depth (distance of P to C;) is not known. If the depth is known, the position of P, can be
determined.

For general 3D scenes, the problem of pose estimation involves determining the essential or
fundamental matrix based on whether the camera intrinsics are known. This process is analogous to
homography estimation in planar scenes, relying on robust estimation techniques using feature matches.
The essential matrix encodes the rotation and translation between two camera views, while the fundamental
matrix represents this relationship when camera calibration is unavailable.

To estimate the essential or fundamental matrix, we utilize a robust estimation method such as
Random Sample Consensus (RANSAC) to identify a consistent set of feature matches. This step ensures
that outliers, which can significantly affect the accuracy of the estimated matrix, are excluded from the
calculation. Once the matrix is estimated, the relative pose of the cameras, including their rotation and

translation, can be derived.
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Guided matching in the context of 3D scenes follows a similar principle to the planar case but is
adapted to work with epipolar constraints. Instead of searching for corresponding points around a given
point, we search along the epipolar lines. This approach leverages the geometric relationship defined by the
essential or fundamental matrix, where each point in one image has a corresponding epipolar line in the

other image.

4.5.2. Evaluation

To evaluate our method, we utilize the Tanks and Temples dataset (Knapitsch et al. 2017), a
benchmark specifically designed for large-scale scene reconstruction. This dataset provides a comprehensive
array of challenging indoor and outdoor scenes captured under realistic conditions using high-resolution
video. Ground-truth data, obtained using an industrial laser scanner, ensures high accuracy and enables
detailed performance assessment of 3D reconstruction methods.

Although the dataset is primarily intended for multiview matching, we sample image pairs from
the image sequences for our pairwise image matching evaluation. We select three scenes for this purpose:
Meeting room, Truck, and Barn. These scenes offer a variety of environments: the Meeting room is an
indoor scene with varying lighting conditions, the Truck represents a complex outdoor vehicle scene with
reflective surfaces, and the Barn is an outdoor scene with repetitive patterns and a mix of natural and

man-made textures. Figure 4.11 provides a visual reference for the scenes.

(a) Meeting Room (b) Truck (c) Barn

Figure 4.11. Selected Scenes: (a) Meeting Room, (b) Truck, (c) Barn.

We generate three image pair datasets by matching every 10th image to 18 images around it, filtering
out those with an angular distance greater than 60 degrees. This results in the following number of image
pairs: Meeting room: 570, Truck: 416, and Barn: 694.

To evaluate the quality of the estimated poses, we use the mean Average Accuracy (mAA) metric

(Yietal.2018; Jinetal. 2021). mAA measures the angular accuracy of the estimated poses by computing the
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difference between the estimated and ground truth translation vectors and rotation vectors. For simplicity,

we only consider the rotation vector in our evaluation. The mAA is calculated by thresholding the angular

error at multiple levels and integrating the resulting accuracy values to provide a single scalar score.

We perform experiments using the same methods described in Chapter 3. Figure 4.12 presents

the pose estimation results, showing average accuracy versus angular error. Numerical results, specifically

mean Average Accuracy at 5 and 10 degrees, are summarized in Table 4.5.

Table 4.5. Pose Estimation Results

mean Average Accuracy (mAA)

Dataset Image Threshold NN MNN SNN FGINN AdaLAM SMNN | HNN GGNN |FLANN HNSW
Pairs (2004) (2015) (2020) (2021) (Proposed) | (2009) (2018)
Meeting room | 570 5° 209 254 250 254 222 271 | 181 250 .148 204
10° 360 415 408 415 .368 437 | 302 .398 270 352
Truck 416 5° 169 216 215 213 204 232 | 139 209 121 .168
10° 279 342 350 354 325 372 | 226 332 204 279
Barn 694 5° 271 332 325 .306 .299 349 | 252 304 225 269
10° 402 465 460 443 432 490 | 368 428 .339 .399
Time Complexity 0(n?) O(n+n) | O(nlogn) |

The results extend the main conclusions we drew in Chapter 3 to epipolar geometry: While

SMNN consistently outperforms all other methods across every dataset, GGNN demonstrates superior

performance compared to other methods with the same or greater efficiency. It also surpasses some of

the less efficient methods. In our experiments, GGNN consistently outperforms NN and achieves better

results than AdaLAM in most cases. These findings highlight the robustness and versatility of GGNN in

various challenging scenarios, reinforcing its potential for practical applications in 3D reconstruction and

other computer vision tasks.
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Figure 4.12. Pose Estimation Results: The x-axis represents the angular difference between the estimated
and ground truth rotation vectors, while the y-axis shows the average accuracy at various error thresholds.

Results are presented for three image pair datasets.
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CHAPTER 5

CONCLUSIONS

The primary goal of this thesis is to reduce the computational cost of solving the common problem of
image matching. Many people around the world cannot afford high-end CPUs, GPUs, and other processing
units on their computers, and numerous applications need to run on mobile or embedded devices. This work
is designed not just for those low-resource devices but also reflects the limitations of our own relatively
modest computer, which constrained our focus to efficiency over accuracy. The motivation is practical and
immediate.

This thesis presents advancements in the field of image matching through the introduction of
efficient algorithms leveraging hyperdimensional computing and group testing principles. The proposed
methods, Group-Guided Nearest Neighbors (GGNN) and Group-Tested Nearest Neighbors (GTNN), offer
practical approaches to enhancing the efficiency of image matching without compromising accuracy.

The hierarchical approach introduced in GGNN reduces the computational complexity of feature
matching from ©(n?) to ©(nyn). By grouping features spatially and matching these groups first, fol-
lowed by individual feature matching within the matched groups, this method identifies sufficiently similar,
geometrically meaningful matches efficiently.

The GTNN algorithm further optimizes the process by achieving ©®(n) time complexity. This is
accomplished by initially matching the most distinct features to feature groups of the other image, followed
by matching these distinct features only with the members of the matched groups. This linear-time matching
algorithm shows promise in improving performance compared to linear-time adaptations of quadratic-time
algorithms.

Empirical results on homography and pose estimation tasks indicate that the proposed GGNN
and GTNN methods outperform traditional nearest neighbors algorithms and achieve performance levels
comparable to other, less efficient methods. These results support the hypothesis that hierarchical matching
of geometrically meaningful feature correspondences can improve or maintain matching performance with
lower computational complexity.

We also proposed a technique for generating better synthetic image pair datasets for homography
estimation. This technique contributes to the development of more realistic datasets, which are essential
for training and evaluating image matching algorithms. Additionally, we introduced methods to facilitate

faster evaluation of image matching pipelines. These methods allow for more efficient assessment of image
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matching performance, speeding up the development cycle and enabling quicker iterations during algorithm
optimization.

The efficiency of solutions in computer science is often a temporary concern. Historically, com-
puting algorithms have become simpler over time when the problem size remained constant, and this trend
persists. We have seen our specialized algorithms, once designed with pride, outperformed by simpler
ones with fewer steps and branches, executed in parallel. We believe that even artificial general intelligence
will eventually be implemented with a straightforward algorithm. Though that day has not yet arrived.
Additionally, while processing units are getting more and more powerful, the number of images to process
and the resolution of these images are also increasing, potentially requiring efficient algorithms in the future.

‘We intend to open-source the project. This release will encompass not only the implementations but
also a comprehensive image matching framework that includes all discussed pipelines, various alternative
modules, several benchmarks, a quick evaluation system, a synthetic dataset generation system, and a
playground with numerous automated visualizations and interactive tools. It is our aspiration that this will
significantly facilitate the work of others in the field. Practitioners will have the capability to experiment with
pipelines by freely selecting alternative modules and parameters, thereby obtaining numerical and insightful
results. Researchers can enhance the existing work by defining their own modules and automatically
obtaining all intermediate and final results. Notably, our experience indicates that establishing these systems
require more effort than the implementation of the proposed methods as modules.

For future research, several directions hold significant potential to further enhance the efficiency

and accuracy of the proposed methods. Key areas of focus include:

¢ Optimized Feature Extraction: Learning a single high-dimensional binary descriptor instead of con-
catenating descriptors can enhance both efficiency and robustness in feature matching by minimizing
correlation and improving speed. Integrating non-maximum suppression directly into the keypoint
detection process, rather than using it as a post-processing step, can further reduce computational

overhead.

* Automated Parameter Selection for GGNN: Developing methods for automatic parameter selection
can enhance the performance of a single run and reduce the overall time required for optimizing
parameters on a dataset of image pairs. For example, determining the rate at which to discard the

lowest-quality group matches based on distance statistics can streamline the process.

* Solving Easy Problems Faster with GGNN: Enhancing the GGNN algorithm to adapt to varying
levels of difficulty in image matching tasks is a promising avenue. In scenarios with small viewpoint
changes, a single group match could be sufficient to generate and verify a reliable hypothesis for

transformation parameters, thus speeding up the process.
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* Solving Difficult Problems Better with GGNN: Large viewpoint and scale changes complicate
matching. Grouping keypoints with similar sizes, proportional to the region size, can address large
scale differences. Although our initial attempts did not improve effectiveness, there are many alter-
native approaches to explore. If images are reused for matching with different images, we can afford
to spend more time processing them individually. One approach is performing affine simulation by
warping the image or patches and allocating part of the group budget for the warped features. We
experimented with bundling warped features of a region to obtain a single affine-invariant group de-
scriptor, but we did not try bundling features of warped regions independently from other simulations

to create multiple affine-covariant group descriptors for each region.

* Maximizing Intra-Group Orthogonality for GTNN: In GGNN, spatial grouping of features is
crucial. For the GTNN method, grouping features based on descriptor distances rather than spatial
proximity, using a greedy algorithm to maximize pairwise orthogonality within groups, could enhance
performance. This is performed once for each image, not for each image pair. If a linear-time algorithm
is needed, random grouping or a hash-based grouping technique could also work. These approaches

might eliminate the need for non-maximum suppression.

* Improving GTNN to Potentially Outperform GGNN: The GTNN algorithm with a time complexity
of ®(n+/n), which matches all individual features rather than just the top v/ can be enhanced to
potentially outperform GGNN. The key to this improvement might lie in filtering out feature-group
matches with descriptor distances explainable by pure chance and ensuring local geometric consistency

before performing global verification.

* Multiview Matching: Extending the proposed algorithms to handle multiview matching scenarios
is a rewarding direction. For instance, image pairs can be selected based on similarities of feature

groups could enhance the process.

In conclusion, while the proposed GGNN and GTNN methods are not revolutionary, they offer
meaningful improvements in the efficiency of image matching tasks. Further research and development are

encouraged to fully realize their potential and continue advancing image matching methodologies.
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