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ABSTRACT 

 

DETECTION AND LOCALIZATION OF MOTORWAY OVERHEAD 

DIRECTIONAL SIGNS BY CONVOLUTIONAL NEURAL 

NETWORKS TRAINED WITH SYNTHETIC IMAGES 
 

Image classification, object detection and recognition have gone a long way in the 

last decade. The competitions, starting with ImageNet, have shown that various 

improving implementations of Artificial Neural Networks are the best Machine Learning 

techniques at the time for such tasks. However, machine learning methods require much 

training data and the such data for image related tasks come at a cost in terms of time and 

effort, if it can be obtained at all. When training data is scarce or not representative of the 

whole target set, synthetic data and data augmentation methods are used to increase the 

training data using what is already available. 

This thesis work shows that when the target classification images have a structure, 

even a loose one, it is still possible to use machine learning methods, deep learning in this 

case, without any real data to begin with and still produce a good detection model. 

In this work, a Convolutional Neural Network model is trained to detect and 

localize informative motorway lane direction signs. Starting with no real samples of the 

target images, a large computer-generated training set is created to train the model. The 

resulting detector can detect the required sign types with high accuracy, localizing their 

position by bounding boxes and categorizing them. 
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ÖZET 

 

OTOYOL ÜST YÖNLENDİRİCİ TABELALARININ YAPAY 

GÖRÜNTÜLERLE EĞİTİLEN EVRİŞİMLİ SİNİR AĞLARI İLE 

TESPİTİ VE KONUMLANDIRILMASI 
 

Görüntü sınıflandırması, nesne tespit ve tanımasında son on yıl içinde epey bir 

mesafe kat edildi. ImageNet ile başlayan yarışmalar, Yapan Sinir Ağlarının muhtelif 

geliştirmelerle uygulanmasının, içinde bulunduğumuz zaman için bu tarz görevler için en 

uygun Yapay Öğrenme yöntemi olduğunu gösterdi. Ancak yapay öğrenme yöntemleri 

oldukça fazla veriye ihtiyaç duyar ve görüntü ile ilgili işlemlerde bu tarz veriler, temin 

edilebilseler bile zaman ve çaba olarak oldukça maliyetlidir. Eğitim verisi kısıtlı veya tüm 

hedef seti temsil edemediği durumlarda yapay veri oluşturulması ve veri çoğaltma 

yöntemleriyle elde olan eğitim verisinin arttırılması yoluna gidilir. 

Bu tez çalışması, hedef sınıflandırma görsellerinin gevşek de olsa bir yapıya sahip 

olduğu durumlarda, herhangi bir gerçek veri olmasa bile yine de yapay öğrenme 

yöntemlerinin (ki buradaki örnekte derin öğrenim yöntemleri kullanılmıştır) 

kullanılabileceğini ve iyi bir tespit modeli oluşturulabileceğini göstermektedir. 

Bu çalışmada bir Evrişimli Sinir Ağı modeli, bilgilendirici otoyol şerit 

yönlendirme işaretlerinin tespit ve konumlandırılması için eğitilmiştir. Hedef görsel 

işaretlerin hiçbir gerçek örneği olmadan yola çıkılarak, modeli eğitmek için bilgisayar 

kodu ile geniş bir eğitim seti oluşturulmuştur. Bu set kullanılarak oluşturulan tespit 

sistemi, istenen işaretleri yüksek doğruluk düzeyi ile tespit ederek, görüntü içindeki 

konumlarını sınırlayıcı kutular ile işaretleyerek sınıflandırabilmektedir. 

 

  



vi 

DEDICATION 

 

 

I would like to dedicate this work to my great family: mother, father, wife, 

daughter, sisters, nephews. May we have many more years to share together. 

 

 

  



vii 

TABLE OF CONTENTS 

 

LIST OF FIGURES .......................................................................................................... x 

LIST OF TABLES .......................................................................................................... xii 

LIST OF ABBREVIATIONS ........................................................................................ xiii 

CHAPTER 1 INTRODUCTION ...................................................................................... 1 
1.1 A general history ..................................................................................................... 1 

1.2 Aim and objective ................................................................................................... 2 
1.3 Related work ........................................................................................................... 2 
1.4 Organization of this document ................................................................................ 3 

CHAPTER 2 BACKGROUND ........................................................................................ 4 
2.1 Earlier work on traffic sign detection and recognition ........................................... 4 
2.2 A brief history of CNNs .......................................................................................... 5 

2.3 Some datasets for traffic scenes .............................................................................. 7 
2.4 Popular network architectures ................................................................................ 7 

2.4.1 ResNet-50 ........................................................................................................ 9 

2.5 Network architectures involving detection and localization ................................. 10 
2.5.1 Faster R-CNN ................................................................................................ 10 

2.6 Use of synthetic data ............................................................................................. 11 
2.7 Data augmentation ................................................................................................ 12 
2.8 Color representations in digital images ................................................................ 13 

2.8.1 RGB ............................................................................................................... 13 
2.8.2 HSV ............................................................................................................... 13 

2.8.3 Other .............................................................................................................. 13 
2.8.4 Alpha (transparency) channels....................................................................... 14 

2.9 Morphological operations ..................................................................................... 14 
2.10 Traffic sign conventions ..................................................................................... 14 

2.10.1 A general look .............................................................................................. 15 
2.10.2 Motorway and non-motorway directional signs .......................................... 15 
2.10.3 Overhead motorway directional signs in Turkey ......................................... 15 

2.11 A brief overview of color-based method used for comparison........................... 17 
2.11.1 Color ranges to be scanned for .................................................................... 17 

2.11.2 Problems with color scanning ...................................................................... 18 
2.11.3 Image processing and morphological operations......................................... 18 
2.11.4 Connected components and final processing ............................................... 19 

CHAPTER 3 GENERATING THE DATA SET ........................................................... 20 

3.1 Real images used .................................................................................................. 20 
3.2 Elements used for creating synthetic signs ........................................................... 21 

3.2.1 Motorway sign background ........................................................................... 21 

3.2.2 Other colored sign backgrounds .................................................................... 21 
3.2.3 Text for place names ...................................................................................... 22 
3.2.4 Arrow signs .................................................................................................... 22 
3.2.5 Road code signs ............................................................................................. 23 

3.3 Sign generation ..................................................................................................... 23 



viii 

3.4 Image transformations used for data augmentation .............................................. 24 

3.4.1 Scaling ........................................................................................................... 25 

3.4.2 Color space variations .................................................................................... 25 
3.4.3 Gaussian noise ............................................................................................... 25 
3.4.4 Rotation .......................................................................................................... 25 
3.4.5 Shear (Horizontal).......................................................................................... 25 
3.4.6 Darkening....................................................................................................... 26 

3.4.7 Cropping ........................................................................................................ 26 
3.4.8 Transparency .................................................................................................. 26 

3.5 Training set ........................................................................................................... 27 

CHAPTER 4 METHODOLOGY ................................................................................... 29 
4.1 Picking a CNN architecture for the final functionality ......................................... 29 

4.2 Planning the feature-extraction layers .................................................................. 30 
4.3 Adapting ResNet50 to Faster R-CNN .................................................................. 30 

4.3.1 Problem with anchor boxes............................................................................ 31 

4.4 Training set ........................................................................................................... 32 
4.5 Training ................................................................................................................. 34 
4.6 Test set .................................................................................................................. 35 

CHAPTER 5 EXPERIMENTS AND RESULTS ........................................................... 36 

5.1 Software and hardware ......................................................................................... 36 
5.2 Settings .................................................................................................................. 36 

5.3 Initial experiments ................................................................................................ 37 
5.4 Further refinements ............................................................................................... 38 
5.5 Further testing ....................................................................................................... 40 

5.5.1 . The effect of target object area .................................................................... 40 
5.5.2 . The effect of detector threshold ................................................................... 42 

5.5.3 . The effect of post-detector filters ................................................................. 45 

5.5.4 . A note on “other” categories ........................................................................ 48 

5.5.5 . The case with negative samples ................................................................... 48 
5.5.6 . The effect of the selected IoU threshold ...................................................... 49 

5.6 A comparison with hard-coded color-based methods ........................................... 51 
5.6.1 . A qualitative comparison ............................................................................. 51 

5.6.2 Comparison through external examples ........................................................ 53 
5.6.3 Comparison through negative samples .......................................................... 54 
5.6.4 Comparison through positive samples ........................................................... 56 
5.6.5 Speed comparison .......................................................................................... 59 

5.7 A hybrid approach ................................................................................................ 60 

5.8 Adverse conditions ............................................................................................... 65 

CHAPTER 6 POSSIBLE FUTURE EXTENSIONS...................................................... 70 
6.1 Faster CNN architectures for real-time detection ................................................. 70 

6.2 Adding more sign classes ..................................................................................... 70 
6.3 Incorporating more types of data augmentation transforms ................................. 70 

6.3.1 Obfuscation .................................................................................................... 71 
6.3.2 Lens distortion ............................................................................................... 71 

6.3.3 Reflections of light......................................................................................... 72 
6.3.4 Night-time conditions .................................................................................... 72 
6.3.5 Adverse weather conditions ........................................................................... 72 

6.4 Fine-tuning with a limited set of real data ............................................................ 72 



ix 

CHAPTER 7 CONCLUSIONS ...................................................................................... 73 

7.1 The possibility of using entirely synthetic data .................................................... 73 

7.2 The importance of synthetic data generation step................................................. 73 
7.3 Thresholds, false positives, and misclassifications ............................................... 74 
7.4 Comparison with color-based hard-coded algorithms .......................................... 74 
7.5 Final verdict .......................................................................................................... 75 

REFERENCES ............................................................................................................... 76 

 

  



x 

LIST OF FIGURES 

 

 

Figure 1. Layer diagram of AlexNet (Source: [2]) ........................................................... 7 

Figure 2. Layer diagram of ZF Net (Source: [40]) ........................................................... 8 

Figure 3. Layer diagram (displayed sideways) of GoogLeNet (Source: [42]) ................. 8 

Figure 4. Residual learning: a building block from ResNet (Source: [9]) ........................ 9 

Figure 5. Structure of a Faster R-CNN network (Source: [70]) ..................................... 10 

Figure 6. Motorway directional information signs (two are road-side, one overhead) .. 16 

Figure 7. Motorway overhead directional information signs ......................................... 16 

Figure 8. A sample detection pipeline for road signs (Source: [4]) ................................ 17 

Figure 9. Some examples of the images used as background for the synthetic data ...... 20 

Figure 10. Computer generated sign backgrounds ......................................................... 21 

Figure 11. Letters and numbers printed with the "Overpass Bold" font ......................... 22 

Figure 12. Arrow sign from the "Transport" font ........................................................... 22 

Figure 13. Arrow sign produced with Microsoft PowerPoint ........................................ 22 

Figure 14. Synthetic road code sign samples from Internet ........................................... 23 

Figure 15. Computer generated synthetic signs for continuing lanes (class 1) .............. 23 

Figure 16. Computer generated synthetic signs for exit lane (class 2) ........................... 24 

Figure 17. Examples of synthetically generated training data ........................................ 28 

Figure 18. Adaptation of ResNet50 into Faster R-CNN (Source: [75]) ......................... 30 

Figure 19. Orange signs before and after adding negative samples in training .............. 39 

Figure 20. Most false positives can be corrected with location and size filters ............. 39 

Figure 21. Other signs require extra measures ............................................................... 39 

Figure 22. Sensitivity rates by target object area in pixels ............................................. 41 

Figure 23. Sensitivity rates with varying detection thresholds ....................................... 42 

Figure 24. Precision rates with varying detection thresholds ......................................... 43 

Figure 25. Precision-Recall curve for continuing lane sign detections .......................... 44 

Figure 26. Precision-Recall curve for exit lane sign detections ..................................... 44 

Figure 27. TP, FP, FN statistics for continuing lane sign detection ............................... 45 

Figure 28. TP, FP, FN statistics for exit lane sign detection .......................................... 45 

Figure 29. The effect of filters on precision statistics ..................................................... 46 

Figure 30. The effect of filters on sensitivity statistics ................................................... 46 



xi 

Figure 31. TP, FP, FN statistics by filters for continuing lane sign detection ................ 47 

Figure 32. TP, FP, FN statistics by filters for exit lane sign detection ........................... 47 

Figure 33. The effect of IoU criterion on precision statistics ......................................... 50 

Figure 34. The effect of IoU criterion on sensitivity statistics ....................................... 50 

Figure 35. Color-based and R-CNN applied to images from Internet ............................ 54 

Figure 36. A false positive example from the color-based method ................................ 55 

Figure 37. A false positive example from the color-based method ................................ 56 

Figure 38. Problem of separated regions with color-based methods .............................. 57 

Figure 39. Problem of missized bounding boxes with CNN methods............................ 58 

Figure 40. Boundıng box problems with both methods.................................................. 58 

Figure 41. Workflow for the hybrid approach ................................................................ 61 

Figure 42. Localizations (left) can be improved (right) by a hybrid approach ............... 62 

Figure 43. A hybrid approach can also worsen the situation rarely ............................... 62 

Figure 44. Effect of hybrid approach on false positives ................................................. 63 

Figure 45. Effect of hybrid approach on false negatives ................................................ 64 

Figure 46. Effect of hybrid approach on sensitivity ....................................................... 64 

Figure 47. Effect of hybrid approach on precision ......................................................... 64 

Figure 48. Effect of hybrid approach on precision-recall curves ................................... 65 

Figure 49. A fıne nighttime example .............................................................................. 66 

Figure 50. A blurry night frame example ....................................................................... 66 

Figure 51. A mildly dark example where the traffic has stopped ................................... 67 

Figure 52. A cloudy weather example ............................................................................ 67 

Figure 53. An example where the sun shines at the camera ........................................... 68 

Figure 54. An acceptable example of a rainy scene ....................................................... 68 

Figure 55. A rainy weather example not working well .................................................. 69 

 

  



xii 

LIST OF TABLES 

 

 

Table Page 

Table 1. Performance of initial experiments ................................................................... 37 

Table 2. Detection performance of initain experiments ................................................. 38 

Table 3. TP and FN rates for continuing lane signs by sign area in pixels ..................... 40 

Table 4. TP and FN rates for exit lane signs by sign area in pixels ................................ 40 

Table 5. Comparison of false positives on a negative sample set ................................... 55 

Table 6. Comparison of performance on positive sample set ......................................... 57 

Table 7. Speed measurements on the positive set ........................................................... 59 

Table 8. Speed measurements on the positive set ........................................................... 60 

Table 9. Results of the hybrid approach performance on positive sample set ................ 63 

 

 

  



xiii 

LIST OF ABBREVIATIONS 

 

 

ANNs:  Artificial Neural Networks 

CNNs:  Convolutional Neural Networks 

CV:  Computer Vision 

HIS:  Hue-Saturation-Intensity color space 

HSL:  Hue-Saturation-Lightness color space 

HSV:  Hue-Saturation-Value color space 

ILSVRC: ImageNet Large Scale Visual Recognition Challenge 

IoU:  Intersection over Union 

NNs:  Neural Networks 

R-CNNs: Region-based Convolutional Neural Networks 

RGB:  Red-Green-Blue color space 

RPN:  Region Proposal Network 

SSD:  Single Shot Multibox Detector 

YOLO: You Only Look Once 

 

 



1 

CHAPTER 1  

 

INTRODUCTION 

 

1.1 A general history 

 

Image processing and computer vision has long been a popular field. While 

general image processing could easily be handled thanks to hard-coded algorithms, image 

understanding required more advanced methods and computing power. 

Initial works involved finding colors, geometric constructs such as lines and 

circles, and finding invariants in images through specialized algorithms. 

Machine learning methods were not used much not only because image libraries 

were not as common but also because images and videos also carried the burden of 

manual annotation. In addition, popular machine learning methods were not very suitable, 

and the computing requirements were high. The world has witnessed to a great leap in the 

field in less than a decade thanks to the popularization of digital imaging, sharing of 

images through Internet, advancement in computing power, and most importantly the 

advances in various methods and techniques in Artificial Neural Networks (ANNs). 

The theory behind ANNs was a very old idea but it was unjustly discredited for 

quite a long while. Various improvements and work [1] on their techniques created a 

spark for some but were still not enough to popularize them until a model, now dubbed 

as AlexNet [2], using deep convolutional networks, which is a type of ANN, 

outperformed others by an unexpectedly wide margin (with almost half the error rate of 

the nearest competitor) in the ImageNet competition of 2012. In the years following that, 

still other CNN models kept obtaining the best performances and CNN methods and 

architectures started attracting everyone’s attention especially in CV. In fact, nowadays, 

almost all entries in such competitions use Convolutional Neural Networks (CNNs). 

The size of the datasets and the complexity of tasks grew hand in hand with 

improvements of the CNN techniques. However, the amount of data still posed a problem 

as the manual annotation of images was a tedious and costly work. Using data 

augmentation methods, the data at hand could be reshaped and reused but this also had a 

limited use. In fact, in some fields, such as learning disparity and optical flow estimation 
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required pixel-accurate data which could simply not be obtained by human annotation 

and the ideas of using synthetic data [3] have started to be utilized. 

Even when there was available data, combining real data with the synthetic 

seemed to offer some advantages in modeling. 

 

1.2 Aim and objective 

 

The aim of this work is to show that it is possible to train a CNN with totally 

synthetic data prepared with a minimal effort for target sets that can vary much but still 

have a general structure. Motorway overhead directional signs are a good example for 

such target data and are used as the practical application of this idea. 

The resulting model performs well and does not require much data gathering, 

preparation, or annotation. The testing data, however, naturally requires such work for 

performance measurement. 

 

1.3 Related work 

 

Computer Vision, Object detection and localization are very general and popular 

fields. Due to the recent commercial race in autonomous driving, traffic scenes are also 

very popular. Older work (produced more than a decade ago) on traffic scenes usually 

concentrated on lane detection and road-side regulatory traffic signs. On the other hand, 

most of the recent work concentrates on general scene understanding and segmentation 

towards autonomous driving goals. “Vision-based Road Sign Detection” [4] concentrates 

on the same real-world application as this work, but uses a low-level color-based 

segmentation in HSL color space. 

There are work that use synthetic traffic scenes from very advanced simulations 

[5], work that use computer games as simulators [6], work that use synthetic training data 

for objects in indoor scenes [7] or human 3D pose estimation [8], or work that use GAN-

based virtual-to-real scene adaptations but they are all on different tracks compared to 

this work. 

The ResNet50 [9] architecture and the Faster R-CNN [10] techniques are used for 

modeling a detector DNN in this work. 
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1.4 Organization of this document 

 

The organization of the rest of this document is as follows: Part 2 gives basic 

background on some technical concepts. Chapter 3 gives brief information on the 

generation of the synthetic data for the application. Chapter 4 describes the methodology 

used for training a model. Chapter 5 discusses experiments and their results. Chapter 6 

briefly mentions some possible future extensions. And finally, Chapter 7 presents the 

conclusions. 
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CHAPTER 2  

 

BACKGROUND 

 

2.1 Earlier work on traffic sign detection and recognition 

 

Initial works on processing vision in vehicles was more on guidance systems and 

concentrated on road [11] and obstacle detection as they were the first problems to be 

solved for starting with vehicle guidance in non-populous areas. As the research moved 

to autonomous driving in urban environments, other works on lane detection, vehicle 

detection, pedestrian detection, sign detection began to emerge. New sensor technologies 

brought detection using a variety of different sensors, such as mono camera, stereo 

cameras [12], omnidirectional cameras [13], and more recently lidar. Naturally, sensor 

fusion [14] (combining the information from different sensor types) and use of hybrid 

cameras [15] have also been tested. 

Sign detection usually referred to detecting danger warning signs, prohibitory or 

restrictive signs, mandatory signs, or special regulation signs as these regulate the traffic. 

Directional signs were not a priority as the vehicles were not expected to depend on the 

signs for guidance. Directional signs had more variation in content, but the other signage 

usually belonged to a finite set of fixed signs. For example, a stop sign did not have any 

variations. Even the speed limit signs had a limited set of variations due to a limited set 

of speed limits. In addition, regulation signs had a strict format, unlike any other object 

to attract the attention of drivers: Round signs with red circles, triangular signs with a red 

triangle, blue signs with fixed pictograms, etc. 

Due to the nature of regulatory signs, color thresholding and segmentation was 

the usual first step to detect possible positive regions. Shape analysis would come as a 

likely second step to confirm the existence of signs [16], [17]. Hue-based color spaces 

were usually preferred for robustness to various outdoors lighting conditions [18], [19]. 

For shape analysis, outer edges of the signs were usually analyzed with methods such as 

edge detectors, genetic algorithms, Hough transforms [20]. The step after detection would 

be classification and neural networks were suggested even before they gained their recent 

popularity [16], [21], [22] but variations of other methods such as Clustering classifiers, 



5 

Nearest Neighbor Classifiers, Laplace Kernel classifiers, fuzzy classifiers [20], PCA, 

Discriminant Analysis, and SVM [17] were also suggested. 

As with other research examples, the research on traffic signs also caused a 

various number of data sets to be formed such as Belgium Traffic Sign Dataset [23], 

German Traffic Sign Recognition Benchmark (GTSC) [24], German Traffic Sign 

Detection Benchmark [25]. 

 

2.2 A brief history of CNNs 

 

The ideas of ANNs date back to 1943 when Warren McCulloch, a 

neurophysiologist, and Walter Pitts, a mathematician wrote an article [26] on modeling 

how neurons might be working. Donald Hebb’s contributions [27] on how neural 

pathways might be strengthening as they are used paved the way to the basic idea of the 

mechanism of neural networks. With the advances in computing in 1950s, these ideas 

could also start to get tested as algorithms. While works on perceptrons, such as that of 

Rosenblatt [28], were drawing interest along with research funding, the book on the 

subject by Minsky and Papert [29] had blown a big negative impact on the field. As a 

result of this impact, the term “Neural Networks” (NNs) had bad connotations for a long 

time and shadowed the works of Werbos [30] and Hopfield [31]. 

Rumelhart, Hinton, and Williams [1] created a new spark for the research and 

applications of in neural networks. Although the computing power and the available data 

was not ready for a wide-spread use at the time, there were promising works, such as that 

of LeCun [32]–[35] showing the capabilities of NNs in laboratory environments [36]. 

Availability of data is also an important factor. ANNs shine at tasks too complex 

to be manually modeled but collection and labeling in fields like Computer Vision (CV) 

is very costly, at least in terms of time and manual labor. Competitions like ImageNet 

[37] provided a great platform both as a massive library of labeled data and as a publicly 

open arena where the results of various algorithmic techniques can be compared. When a 

model, now dubbed as AlexNet [2], using deep convolutional networks, which is a type 

of ANN,  outperformed others by an unexpectedly wide margin (with almost half the error 

rate of the nearest competitor) in the ImageNet competition of 2012, CNN methods 

attracted everyone’s attention especially in CV. So much that, nowadays, almost all 

entries in such competitions use Convolutional Neural Networks (CNNs). 
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The size of the datasets and the complexity of tasks grew hand in hand with 

improvements of the CNN techniques. As more could be done, more would start to be 

expected. The Pascal Visual Object Classes (VOC) Challenge of 2005 [38] had only 4 

classes, 1578 images containing 2209 objects and required classification and detection. 

While the 2012 challenge had 20 classes, 11530 images containing 27450 Region-of-

Interest (ROI) annotated objects and 6929 segmentations. ImageNet had 1000 object 

categories and started with a classification task in 2010; in 2017, the tasks were object 

localization, object detection, and object detection from video. Microsoft COCO dataset 

[39] offered photos of 91 object types with 2.5 million labeled instances in 328 thousand 

images where objects are labeled in using per-instance segmentations for object 

localization. 

As these competitions provided a common ground for comparison of CNN 

architectures, the ones with good performance have also been popularized among the 

community. After the great success of AlexNet [2] in 2012, improvements with new ideas 

came almost annually with ZF Net [40] in 2013, VGG Net [41] in 2014, GoogLeNet [42] 

in 2015, and MS ResNet [9] again in 2015. 

As more has been started to be expected, new techniques were devised to include 

new functionalities. While early works started with classification of the entire input image 

as a single class, the trend moved to detection and classification of a multiple number of 

objects, then adding localization as well, and then changing localization from bounding 

boxes to pixel segmentations. Of interest, architectures such as R-CNN [43], Fast R-CNN 

[44], and Faster R-CNN [10] incorporated object localization; Mask R-CNN [45] added 

an instance mask for instance segmentation; YOLO [46], YOLOv2 or YOLO9000 [47], 

YOLOv3 [48], and SSD [49] incorporated a single-pass system for speed improvements; 

SqueezeNet [50] and MobileNets [51] improved on the computational costs. 

As such architectures gained interest and popularity, their pre-trained versions 

have started to be available. This not only saved time by eliminating the need to 

reconfigure network layers from scratch for new projects but it also helped with the 

training process as well due the concepts of domain adaptation and transfer learning [52], 

[53]. where a pretrained network is used at the start and the training adapts the results to 

a different target data set with beneficial results [54]. With the introduction of platform 

exchange formats, such as ONNX [55], architectures and pre-trained data might be used 

even more freely in the near future. 
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2.3 Some datasets for traffic scenes 

 

The advances in CV also made its impact on other fields that benefit from it, such 

as medical diagnosis and autonomous driving. While this may have driven the use of 

different types of sensors and sensor fusion in areas like autonomous driving, possibly 

causing them to slightly linger away from CV, it has also supported the production of 

various other data sets and competitions. Some traffic scene datasets are Leuven [56], 

CamVid [57], Daimler Urban Segmentation [58], KITTI [59], [60], Cityscapes [61], [62], 

Oxford RobotCar Dataset [63], Mapillary Vistas [64], ApolloScape [65], Berkeley Deep 

Drive [66], and nuScenes [67], as well as the synthetic data set Synthia [68]. 

 

2.4 Popular network architectures 

 

Although they look very simple now and not used at all, LeCun’s various “LeNet” 

networks must still be mentioned as an early architecture that used CNNs. LeNet-5 had 

only 7 layers, 3 of which were convolutional. And the paper on gradient-based learning 

[34] is considered to be a pioneering the field. 

The following networks have made their popularity within very short time periods 

among each other and have helped the fast evolution of the CNN architectures. 

AlexNet [2] had 8 trainable layers, of which 5 were convolutional and 3 fully 

connected. But it also had ReLu activation, data augmentation, dropout, overlapping 

pooling, and local response normalization. 

 

Figure 1. Layer diagram of AlexNet (Source: [2]) 
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ZF Net [40] in 2013 improved on AlexNet architecture by using 7x7 filters instead 

of 11x11 ones and using a stride of 2 for the convolution instead of 4 to retain much more 

information for the further layers of the architecture. 

 

Figure 2. Layer diagram of ZF Net (Source: [40]) 

 

VGG Net [41] in 2014 was a simple in that, it decreased the CNN filter sizes 

further down to 3x3, but it was also deeper than its precedents, with 19 CNN layers. 

 

GoogLeNet [42] in 2015 went even deeper with a 22 layers when counting only 

layers with parameters but the overall number of layers were around 100. It introduced 

the “inception module”. 

 

Figure 3. Layer diagram (displayed sideways) of GoogLeNet (Source: [42]) 

 

MS ResNet [9] in 2015 introduced “identity shortcut connections” and offered 

different versions with varying number of levels with 50, 101, and 152 being popular 

sizes used in following work by others. 

As the network architectures got deeper, the issue of model size, memory size and 

other computational costs have also started to gain an increasing focus [69]; SqueezeNet 

[50] and MobileNets [51] have provided some good solutions in such matters. 

ResNet50 architecture is very popular for various CNN-related work so it is used 

for the feature extraction part (until the final stages of the DNN) in this work. 
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2.4.1 ResNet-50 

 

As mentioned previously, ResNet [9] was one of the successful improvements on 

the CNN structures. This is mainly because it could use a deep layered network through 

a new structure it introduced: identity shortcut connections or a residual network. 

 

Figure 4. Residual learning: a building block from ResNet (Source: [9]) 

 

The CNNs seemed to improve as they get deeper, but they also experience other 

problems with the depth so an “infinitely deep” structure is not possible. Some of these 

problems are vanishing gradients and degradation problem. CNNs calculate gradients and 

use backpropagation to update the weights in the network; however, as the number of 

layers increase, the updates for the earlier layers can get smaller and smaller. This is called 

vanishing gradient. In addition to that, as the network gets deeper, every layer introduces 

extra training error and the number of parameters to be optimized get larger; this 

degradation in training accuracy is called the degradation problem. 

The idea of residual learning adds identity shortcut connections every few layers 

forming “residual modules” and they help improve on both of these problems. These 

shortcuts allow better backpropagation of gradients and the weight calculation is eased as 

it is no longer necessary to compute for a long line of layers but only compute the residual 

weights alongside the identity shortcut connection. 

Networks of various depth are tested with this architecture and the ones with 50, 

101, and 152 showed a good level of accuracy. The 50-layer version, referred to as 

ResNet-50, has become popular for as a base for the initial feature extraction layers. 
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2.5 Network architectures involving detection and localization 

 

R-CNN [43], Fast R-CNN [44], and finally Faster R-CNN [10] have become 

popular CNN architectures for detection and localization. YOLO [46], YOLOv2 or 

YOLO9000 [47], YOLOv3 [48], and SSD [49] enabled real-time performance through 

their “single-pass” systems. 

Although a real-time implementation would make more sense for the practical 

application of sign detection, this works focuses on the theory of use of completely 

synthetic data so Faster R-CNN is used for ease of implementation to obtain the results. 

A YOLO implementation is being considered for future real-time testing. 

 

2.5.1 Faster R-CNN 

 

Although all three versions of this algorithm group are mentioned together, they 

were introduced within short intervals and the last version, as the most improved one, has 

become a very popular structure for performing classification and localization together. 

 

Figure 5. Structure of a Faster R-CNN network (Source: [70]) 
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The main idea of R-CNN methods is the use of “region proposals”. Previous 

methods used techniques like sliding windows of various sizes which took much time. 

Both of the initial R-CNN versions used “selective search” algorithm. R-CNN proposed 

a certain number of regions which it cropped, resized, and passed to the CNN for 

classification. Instead of feeding the regions separately, Fast R-CNN moved the region 

proposals to a further stage; it would first pass the whole image through the CNN and 

then process the region proposals, avoiding multiple processing of overlapping parts of 

proposed regions. 

Faster R-CNN [10] further improved on this by abandoning the selective search 

algorithm which slowed down the process and obtaining the region proposals through a 

separate but parallel Region Proposal Network after the feature maps and before the 

classification. 

Although, there have been huge speed improvements to classification with 

localization techniques, most importantly with YOLO [48] and SSD [49], it is a matter of 

discussion how these improvement may have affected classification performance. There 

have been suggestions on both the original papers and third-party review papers [71] but 

it is hard to make a definitive comparison due to differences in the original platforms, 

comparisons through different data sets, and possible implementation differences. 

 

2.6 Use of synthetic data 

 

CNN models improve with the amount of training data; however, the production 

of ground truth data for image classification problems is a very costly (at least in time and 

effort) manual process. This led the consideration of the use of synthetic data and 

augmentation methods of the available data. 

Several different methods of use of synthetic data are proposed. Mayer et al. [3] 

stress the importance of synthetic data for learning disparity and optical flow estimation, 

since they require pixel-accurate data which cannot be obtained by human annotation, 

and suggest multiple ways of generating such data. The Synthia dataset [68] proposes 

using totally synthetic urban scenes images in combination with other publicly available 

annotated urban scenes for semantic segmentation. While Tremblay et al. [72] propose 

training a model with synthetic data with non-realistic random domain parameters and 

then fine-tuning it on real data, Hinterstoisser et al. [73] go the other way by proposing 
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using a network pre-trained with real images and freezing its initial feature extraction 

layers and then training the following layers through synthetic images obtained by 

OpenGL rendering. As mentioned previously, there are also work that use synthetic traffic 

scenes from very advanced simulations [5], that use computer games as simulators [6], 

that use synthetic training data for objects in indoor scenes [7] or human 3D pose 

estimation [8]. 

 

2.7 Data augmentation 

 

As stated in the previous section, CNN models improve with the amount of 

training data but the production of ground truth data for image classification problems is 

costly. This led the consideration of the use of synthetic data and augmentation methods 

of the available data. 

Data augmentation involves using the data at hand to produce more data that fits 

the real-world situation for obtaining a larger training set. It may have a longer history 

than synthetic data generation. Various methods are used for oversampling of unbalanced 

numerical data in data analytics. 

In image classification problems, data augmentation is even more important 

because the amount of training data is very important, the collection and manual 

annotation of data is costly, and data augmentation also help with generalization 

(avoiding overfitting) of the data. As an additional bonus, data augmentation of images 

are relatively simple operations that do not change the integrity or correctness of the data, 

such as horizontal or vertical flipping, scaling, noise, rotation, cropping, shear, warp, etc. 

GAN-based data augmentation methods are also being proposed increasingly. In fact, 

previously mentioned superior-performing networks such as AlexNet [2], VGG [41], 

GoogLeNet [42], and ResNet [9] all used data augmentation methods, turning this into 

standard practice. 

There are also two popular alternatives in standard practice for incorporating data 

augmentation: in preparing the training data set (offline) or during training (online). These 

two alternatives provide a trade-off between dedicating more memory for the training set 

versus dedicating more time and computing resources during the training phase. Image 

data augmentation methods are becoming part of the popular deep learning libraries and 

platforms. 
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2.8 Color representations in digital images 

 

There are have been various color representations (or color spaces) used for digital 

images. Different representation types can be selected not only for efficient storage 

purposes but also for enabling different types of analyses and manipulations. 

 

2.8.1 RGB 

 

RGB is probably the most popular method by far. It is based on the human 

perception of color. Colors are represented by a combination of separate levels for Red, 

Green, and Blue components. 

 

2.8.2 HSV 

 

HSV color space is based on the Hue, Saturation, and Value parameters where the 

hue represents a certain point in a circular color scala, saturation represents the shade of 

a bright color (hue) and the value roughly represents a mixture of white or black. 

 

2.8.3 Other 

 

Some other popular color representations are HSL (Hue, Saturation, Lightness), 

HIS (Hue, Saturation, Intensity), HCL (Hue, Chroma, Luminance), CIE L*a*b* 

(Commission Internationale de l'Éclairage, Lightness*, a*, b*). 

Color spaces using Hue, such as HSV and HSL, are sometimes used in color-

based algorithms since the hue value is considered to be less affected by lighting 

conditions (illumination, shadows, etc.) and easier to work with as a single hue value can 

be tested for selecting areas with a certain color. They can be used for selecting a certain 

group of image pixels corresponding to the desired hue values, such as the green 

background of motorway signs, without being concerned on how various lighting 

conditions can change. 
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2.8.4 Alpha (transparency) channels 

 

Sometimes, an extra layer of information (as a fourth layer or a separate layer 

from the 3-layer color channels) is used if an image is to be used over another image or 

background. 

 

2.9 Morphological operations 

 

Morphological operations in CV are used for changing, selecting, or segmenting 

the pixels in a digital image according to its neighbors and through a pre-defined shape, 

called a structuring element. 

Some of the basic morphological operations are erosion where larger CCs can be 

“eroded” into smaller ones, dilation where smaller CCs can be “dilated” into larger ones, 

opening, and closing. Morphological “opening” operation is an erosion operation 

followed by a dilation operation. Morphological “closing” operation is a dilation 

operation followed by an erosion operation. 

These operations are usually done in pre-planned groups in manual handling of 

selection of certain groups of pixels and are usually followed by a grouping of “connected 

components” (CCs) in the end. They can be used, for example, to fill in the impurities or 

other elements inside a desired area, such as filling in the spaces of letters inside a selected 

rectangular sign area. 

 

2.10 Traffic sign conventions 

 

Although various international conventions have been used, such as the United 

Nations ECE’s “Convention of Road Signs and Signals” of Vienna, 1968, to provide a 

degree of uniformity of traffic signs, there are still a noticeable degree of variation among 

different regions and countries. Even countries that seem to have agreed on a common 

standard, such as those in the European Union, can still have varying degrees of 

differences in their signs. Even the categorization of traffic signs varies from country to 

country. 
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2.10.1 A general look 

 

Vienna Convention on Road Signs and Signals had 52 signing countries by 2004. 

This convention categorizes traffic signs into eight categories, of which some are: danger 

warning signs, prohibitory or restrictive signs, mandatory signs, special regulation signs. 

The category that relates to this work is the “direction, position, or indication signs”. 

 

2.10.2 Motorway and non-motorway directional signs 

 

As the Vienna Convention did not set any standards for direction signs, they have 

the most variations among different countries and regions. 

Similarly, motorway signs also have a large variation. As an example, considering 

the region we are in, directional signs in motorways use: 

• White on green in Turkey, Greece, Bulgaria, Italy, Switzerland, Denmark 

• White on blue in Germany, France, Austria, Spain, Portugal, Norway 

In non-motorway signs, there is even a greater variation: 

• White on blue in Turkey, Greece, Bulgaria, Italy, Switzerland 

• White on green in France, Portugal, United Kingdom 

• Black on yellow in Germany, Norway 

• Red on white in Denmark 

• Black on white in Spain 

 

2.10.3 Overhead motorway directional signs in Turkey 

 

This work concentrates on a very small part of the traffic signs scheme to test the 

CNN training by synthetic data. That part is the overhead motorway directional signs in 

Turkey.  

In motorways we usually see a road-side sign as the one on the right to indicate 

the forward directions and the exit directions for the motorway before we come to the 

exit. 

We can then see an exit sign, again on the side of the road, indicating where the 

exit leads. 
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We are then likely to see an overhead sign indicating the continuing lane 

directions and the exit lane directions. 

   

Figure 6. Motorway directional information signs (two are road-side, one overhead) 

 

We can yet have another sign at the exit point indicating the direction the exit will 

lead. 

As can be seen in this example, although the main motorway signs are 

standardized as white on green background, various other elements of different colors can 

also be present. In this example, the continuing motorway is indicated with an orange 

colored motorway code of “O. 32”. The exit leads to a non-motorway road which is 

indicated by white text on a blue background. Similarly, the highway code “D. 300” is 

also indicated by a design of white text on a blue background. There can even be other 

directional information such as black text on white background for city roads or white 

text on brown background for touristic places. 

 

Figure 7. Motorway overhead directional information signs 
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This signage can be interesting because it is not fixed; in a way, it has a certain 

amount of variation in each sign, including names, backgrounds, road codes, and even 

the number and type of arrows used. On the other hand, it does have a certain structure as 

described above: green background, arrow signs, text, and more text with possible 

backgrounds of green, blue, white or brown. 

 

2.11 A brief overview of color-based method used for comparison 

 

The main idea is “masking” the pixels that contain the possible color ranges the 

target signs may contain, doing some morphological operations to turn this “mask” into 

possible areas, and going over those areas separately to determine the possibility of them 

containing the target signs. 

 

Figure 8. A sample detection pipeline for road signs (Source: [4]) 

 

2.11.1 Color ranges to be scanned for 

 

First of all, the RGB color space representation is converted into HSV color space. 

The hue values allow us to scan for a certain color without worrying about its lighting 

conditions or other variations such as shadow falling on them. 

Unfortunately, this is a more tedious process than it seems. First of all, 

unfortunately there is no single color to scan for. Some countries do follow a “white text 

on a certain color background” strictly, Turkey is unfortunately not one of them. Although 

the motorway signs are defined as “white text on green background”, some of the text 

(name of places as directions) are written on different colored backgrounds on that sign. 

So the green background can have other rectangles with different colored backgrounds of 

blue, brown, and white. 
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The addition of white background complicates things even further because: 1) 

white is not a color and it cannot be scanned by a hue range, and 2) the white background 

also introduces black text, again not a hue-ranged color. 

Furthermore, road codes can be placed on the signs and they add another new 

color: orange. 

So, to sum up, a color-based scan for Turkish motorway signs would include: 1) 

green, 2) blue, 3) brown, 4) white, 5) black, 6) orange. 

“Real” colors (green, blue, brown, orange) are mainly scanned by a hue (H) range 

but the saturation (S) and value (V) ranges also need to be checked. There are different 

areas of the HSV color space that are described as the chromatic area, unstable chromatic 

areas, and achromatic area [74]. The H value does not guarantee by itself that a pixel is 

of a certain target color. 

Similarly, white and black are not chromatic colors. They can be better scanned 

by V and S values while they can contain a random H value. 

So, a number of masks are produced, at least one for each color, even more for 

other colors. For example, since green is the most common and important color, 5 

different masks are prepared and combined together for detection. 

 

2.11.2 Problems with color scanning 

 

Perhaps the most important problem is that certain colors ranges can be found in 

a number of places in a motorway scene image. A clear blue sky is very likely to match 

our blue scans for the signs. A distant view of sea can also cause problems. Similarly, the 

greenery on the side of the motorway can trigger our green scans. Different shades of 

white and black can be found in even a larger number of regions but luckily, most of them 

would be smaller regions. 

 

2.11.3 Image processing and morphological operations 

 

After the color masks are determined an initial filtering would be done based on 

the location of the pixel masks. Then to get a clearer group of points median filtering 

would be applied. To turn the separate pixels groups into a more robust blocks, 
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morphological operations would be applied. A “morphological closing” operation would 

result in block of masked pixels. 

 

2.11.4 Connected components and final processing 

 

The resulting blocks of pixels from the previous step would be turned into separate 

connected components. A great number of connected components are usually found at 

this stage. Various reasonings can be used to filter them. The most obvious ones are by 

size, location, and aspect ratio. Then more intricate reasoning methods can be applied 

such as the ratio of specific colors in each connected component, the rate of color 

variations at the edges of the determined regions, distributions of the locations and sizes 

of remaining connected components, etc. 

At this point, we would have a number of connected component block which can 

easily be represented by rectangular regions or bounding boxes. A separate classification 

algorithm would still be needed at this stage both to make sure that the bounding boxes 

contain a sign and to classify what that sign is. To achieve a more robust system, a 

tracking algorithm can also be applied to smooth out any residual differences that may 

result from the previous steps. 
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CHAPTER 3  

 

GENERATING THE DATA SET 

 

3.1 Real images used 

 

  

  

  

Figure 9. Some examples of the images used as background for the synthetic data 

 

Although it is stated that the training set is created using no real data, it must be 

noted that the background images used for creating the training set are actually real 

images from a dashboard vehicle video camera but they do not contain any road signs at 

all. There are 113 such background images with 1920x1080 resolution, all selected from 

frames that did not contain any road signs and all from a single video recording file 

recorded in July 2017. That particular recording is selected because it was taken on a part 

of the motorway where there were not many signs for a long time and because it contained 

a clear sky, road side greenery (although it was not really green due to the extremely 
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warm July weather in İzmir), and some partial view of sea scenery from far. This choice 

was due to the fact that clear skies, greenery, and sea can be problematic for color-based 

selections. Below are some examples of the background images used. 

The background images could also have been synthetically created too or 

otherwise, copied from elsewhere. However, such images are easy to obtain, and they do 

not clash with the claim of “no real data” since they do not contain the targeted positive 

class sign images. The signs, which are the actual focus of training for detection, are 

completely synthetic. 

 

3.2 Elements used for creating synthetic signs 

 

3.2.1 Motorway sign background 

 

MATLAB code is used to produce a green sign background. It is simply a white 

rectangle with curved corners put on top of a green background. The color value for the 

green is arranged manually so as to resemble the green background of signs in images. 

The sign is generated at a specific size (200x200) so that it can later be changed 

to any desired size by replicating or cutting out the mid portion either horizontally or 

vertically. 

    

Figure 10. Computer generated sign backgrounds 

 

3.2.2 Other colored sign backgrounds 

 

Similar to the green background, other sign backgrounds are prepared in blue, 

brown, and white. These backgrounds can be used according to the status of the road 

leading to a location. In Turkey blue is used for non-motorway roads out-of-city, white is 

used for roads within the city limits, and brown is used for touristic destinations. 
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Note that an extra black border is added to the white sign box on the right to show 

its borders in this document; the original sign does not have an extra border. 

The sizes are, again, set to 200x200 to be resized again according to need. 

 

3.2.3 Text for place names 

 

In order to make the synthetic signs look close to the original ones, various fonts 

are searched on the Internet. A font named “Overpass Bold” seemed to be close enough 

although the spacings between letters were somewhat tighter than needed. 

 

 

Figure 11. Letters and numbers printed with the "Overpass Bold" font 

 

3.2.4 Arrow signs 

 

The bottom-pointing arrow signs for continuing lanes are used from another font 

set specifically created for British road signs: the “Transport” font. 

 

Figure 12. Arrow sign from the "Transport" font 

 

However, the arrow sign for exit lanes had to be recreated using PowerPoint. 

 

Figure 13. Arrow sign produced with Microsoft PowerPoint 

 

 

abcçdefgğhıijklmnoöprsştuüvyz 1234567890 

ABCÇDEFGĞHIİJKLMNOÖPRSŞTUÜVYZ 

^ 
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3.2.5 Road code signs 

 

Occasionally, there are road codes put on the signs such as O.32, E.90, D.550. 

Although these could as easily be generated through code, their synthetic versions already 

available on the Internet were used for simplicity. 

     

 

   

 

     

Figure 14. Synthetic road code sign samples from Internet 

 

3.3 Sign generation 

 

Figure 15. Computer generated synthetic signs for continuing lanes (class 1) 

 

For the continuing lane signs, the standard green box gets loaded, then its width 

is changed to a random number within an acceptable range. The height is kept constant at 

200 pixels for ease of application since the size of the whole sign will later be scaled 

anyway. Then with random weights, its number of lane markers (1, 2, 3), number of 

columns (single or double), the number of text lines (place names) for each column, 

number of rows for each column (1, 2, 3), and background box colors, if there will be 

any, are decided. 
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The place names are randomly selected from a list of place names in the İzmir 

region with a chance of generating a random text as a place name to avoid overfitting text 

content. Random text starts with a capital letter and is 4 to 10 characters long. 

Signs for exit lanes are generated in a similar manner except there are four initial 

exit arrow configuration possibilities along with their appropriate text locations. 

Besides the width, the locations and sizes of text, text areas, arrows, and road code 

signs are also varied randomly within certain ranges. 

   

   

   

Figure 16. Computer generated synthetic signs for exit lane (class 2) 

 

The two types of signs are generated separately but combined together by placing 

them next to each other as they usually are placed in motorways. Then the transformations 

explained in the next section are applied equally to both signs for data augmentation. A 

random distance is placed between the signs and this distance is defined as a transparent 

area. 

 

3.4 Image transformations used for data augmentation 

 

As mentioned earlier, there are many image transformations that can be used for 

data augmentation. These transformations are applied only to the generated sign images 

and not to the background image. The most popular transformations are usually horizontal 

and vertical flipping but since they are not used as they are not relevant for this case. The 

transformations used are as follows: 
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3.4.1 Scaling 

 

Scaling is done as a whole and equally on both axes and according to the 

placement on the view. If the image would be placed closer to the vertical center of the 

view, then the sign would be scaled smaller as if it were farther away and closer to the 

horizon. Conversely, if it would be placed higher up on the view then it would be scaled 

larger as if it were close to the camera and viewed by a vehicle that was almost about to 

passed underneath it. 

 

3.4.2 Color space variations 

 

In order to generalize the detectors and make them more robust, some variations 

are applied to the channels in the HSV color space components. 

 

3.4.3 Gaussian noise 

 

This is made to cause a degree of variance in the image to avoid overfitting. 

However, the amount of noise used is very low. 

 

3.4.4 Rotation 

 

There is a limited amount of random rotation within the range of 10 degrees is 

applied to cover for possible misalignment of the camera holder and lens distortion to a 

degree. The starting degree of the range of rotation is determined according to the 

positioning of the sign in the view, which is also random within a range function; this is, 

again, for simulating the lens distortion to a degree. 

 

3.4.5 Shear (Horizontal) 

 

A random amount of horizontal shear is applied within a limited range to simulate 

the possible effects of perspective from lens distortion. Although lens distortion is quite 

non-linear and bends the lines and borders out of shape, applying a true lens distortion 
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effect would require much effort with a limited return. The range of shear is, again, 

determined according to the positioning of the sign in the view. 

Vertical shear is not used; however, it could be used in future versions since it 

might be helpful in simulating the lens distortion with a minimum amount of computing 

power. 

 

3.4.6 Darkening 

 

To account for various differences of lighting, varying degrees of darkening is 

used. This is done by converting the image into HSV color space, toning down the V 

value randomly, and converting the image back to RGB color space again. As the model 

is planned to be run in normal lighting conditions, making images lighter is not 

considered. Darkening can be especially useful if the light source (sun) is at an angle in 

the front, facing the camera, making the signs look darker. 

 

3.4.7 Cropping 

 

Cropping is not really applied as a transformation, although it might have been 

useful for training the detector for the conditions of obfuscation. Parts of the image signs 

are cropped only when those parts fall out of the visible area of the camera due to the 

random positioning. 

 

3.4.8 Transparency 

 

There are two situations where transparency conditions are taken into 

consideration. One is due to combining two signs, a continuing lane sign and an exit sign; 

the other is due to rotations. Rotations usually involve a larger image to fit the rotated 

original, filling in the extended parts with black pixels or they require keeping the same 

image size and cropping off the rotated parts falling out of view. The former option is 

used for rotations, with a transparency mask is used for the black fill-ins when the sign 

images are patched on to the background. Although a similar situation exists in the case 

of shears, transparency mask is not used for shear transformations for simplicity. 
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3.5 Training set 

 

The background images and the video camera recording resolutions are 

1920x1080. For each training sample, two random sign generators, one for the continuing 

lanes and one for the exit lane, are generated, placed together with a random range of 

separation, assigned a random location within an area, passed through various data 

augmentation transformations as explained above, and finally patched on to the selected 

random background image. The final image, however, is reduced to a 960x540 size for 

faster processing and to avoid GPU memory problems during training. 

As will be explained in the next section, Faster R-CNN architecture is used to 

train for both classification and localization. This requires that both the classifications and 

the localizations within the training image must be provided. Since the images are patched 

by a constrained random placement function, which means that images are placed 

according to where they could be expected, the localization of each class of sign is also 

known. One important thing here is, of course, keeping track of the size and localization 

changes as various transformations are applied before the patching. For every image 

generated and patched, the data for the classification and localization (in terms of the 

upper left corner coordinates, width and height) are also recorded in a training data table. 

Not shown in the figure is the addition of the orange road code signs as the 

background. There are some signs that are very similar to the two defined classes but do 

not belong to either. They can naturally be detected as a target class due to the similarity 

to them and the dissimilarity to the background patterns. In order for the detector to learn 

a distinction, such negative sample should be introduced in the background of the 

synthetic training data. In this case, separate orange road code signs on top of the 

directional information signs could have been identified as a target class since they can 

be observed on the target class signs. Putting them in the background parts of synthetic 

images have helped us prevent that. 
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Figure 17. Examples of synthetically generated training data 
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CHAPTER 4  

 

METHODOLOGY 

 

Although the main contribution of this work is in showing that a computer-

generated data set without any real data can be used for training a successful CNN model 

for detection and localization for a somewhat constrained target set, knowing the 

methodology that follows for training a detector can also be useful not only for 

understanding and reproducing the work but also for examining how the data generation 

parameters affect the results of the final detector. 

Below are some information on the methodology and how things are set up, along 

with some of the decisions made during the set up and the reasoning behind them. 

 

4.1 Picking a CNN architecture for the final functionality 

 

The CNN architecture should be chosen according to various aspects of the project 

such as the final output required, performance, speed, available computing power, 

available memory, processing speed, etc. 

As classification and localization for images are required, it would be wiser to 

choose an architecture with localization output. As we require simple localization and not 

object segmentation, architectures with simple bounding box localizations would be 

adequate. 

In a real-world application for classification and localization from video, 

processing speed of the architecture would also be important; however, since the main 

goal of this work is presenting the possibility and practicality of a synthetically generated 

training data, the speed will not be stressed. 

As mentioned before, some of the choices with bounding box localization are R-

CNN [43], Fast R-CNN [44], Faster R-CNN [10], YOLO [46], YOLOv2 or YOLO9000 

[47], YOLOv3 [48], and SSD [49]. While the YOLO and SSD algorithms also provide 

the added advantage of real-time processing, Faster R-CNN [10] is chosen due to 

familiarity for testing of the idea and the popularity of the technique. 
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4.2 Planning the feature-extraction layers 

 

There have been various CNN implementations that achieved good performances 

on well-known competitions and data sets. Most popular ones have been offered as pre-

trained, ready-to-use models. Not only using such pre-trained models can help save time 

and efforts by going around the need to design an CNN architecture from scratch, but 

they can also help with improving the training phase if the features to be detected for the 

new application is somewhat similar to those of the pre-trained model. Therefore, it has 

started to turn into standard practice to pick a well-performing pre-trained model, use a 

wide (deep) range of its initial layers as a feature-extraction network, and make the 

necessary changes after the so called feature-extraction layer to convert the model into 

the desired architecture. 

As mentioned previously, for this work, the popular ResNet50 architecture is 

selected and a pre-trained ResNet50 network was used as the starting point. 

 

4.3 Adapting ResNet50 to Faster R-CNN 

 

The figure shows the original blocks of ResNet50 network in lighter blue and the 

modifications in dark blue, red, and green. 

 

Figure 18. Adaptation of ResNet50 into Faster R-CNN (Source: [75]) 

 

As is the usual process in using a pre-trained network for transfer learning, the 

three last layers of the network (fully connected + softmax + classification) are replaced 

with new ones of the same type. These are shown as the dark blue layers in the figure. 

Next, box regression layers are added for the localization output. These are shown 

in red (the two at the right) in the figure. In addition, an roiMaxPooling2dLayer is added 
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after a feature extraction layer. This added layer is shown as the single red layer on the 

left in the figure. 

Finally, the Region Proposal Network (RPN) is added. RPN is a specialty of 

Faster R-CNN and is used to have the network suggest the region proposals instead of 

getting them from an external algorithm, such as the selective search, which would slow 

down the process. These are shown as the green layers in the network. They initially take 

an input from the selected feature extraction layer, they have a feed connection to the 

roiMaxPooling layer, and they also have two outputs, a classification layer classifiying 

each anchor as a specific object or background and a box regression layer predicting 4 

box offsets for each layer. 

 

4.3.1 Problem with anchor boxes 

 

An important parameter while adding these layers to adapt the ResNet architecture 

into a Faster R-CNN one is the anchor boxes. These are used to increase the speed and 

efficiency of the detection process and define the expected scales and aspect ratios of the 

objects. The RPN uses the given anchor box sizes in creating the region proposals. 

One problem in this work is that there is no real data to start with. General practice 

is scanning through the training data to see what sizes of bounding boxes there are for the 

objects and then use an algorithm, such as k-means clustering, to decide on the number 

of anchor boxes and their sizes that would cover well the data in training set, assuming 

that the training set is also a good representation of the real data. 

When using synthetic data, if the model that generates the synthetic data is a good 

representation of the real world then this would not be a problem. When the synthetic 

data is generated with the hope that it would generalize well to the real-world situations, 

which is the case in this work, then the anchor boxes become another parameter to be 

guessed manually. 

Another problem is the scales to be used for anchor boxes. When detecting road 

signs from a moving vehicle, we have a wide variety of scales for the signs. When the 

signs are far away, they are very small. As one gets closer, the size increases. As one 

passes by them, they may be as wide (for the overhead signs) as the width of the view or 

almost as high (for the road-side signs) as the height of the view. This calls for a very 
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wide range of anchor box scales. When different aspect ratios are added, the number gets 

multiplied. 

One possible point of elimination is using a criterion for the desired size for the 

signs to be detected. When the signs are too far away, detection and classification would 

not be possible for man or machine; furthermore, even if the sign can be detected and 

classified, it would not be very useful if the information (text) on the sign is not legible. 

That is to say, even if we can see that there is a directional information sign far away, it 

is no use for us if we cannot read the text that indicates where the direction leads. In a 

similar manner, if we have already read the information on a sign from a distance, there 

is really no point in still reading it again over and over as it gets closer. That is to say, if 

we have read where a direction leads, we do not really need to read it again as we pass it. 

Thus, using a size criterion, such as the minimum or maximum pixel size for the height 

or the width of a sign, for ignoring very small (very far) or very large (very very close) 

signs makes sense and we can use this criterion to limit the scales of the anchor boxes to 

use. 

One other problem may arise when the size of the input images for the training 

set and the real-world data do not match. As will be explained in the next section, this 

might happen due to hardware limitations, such as the GPU memory, during the training 

phase of a CNN. If we use smaller images for training, we should consider how this would 

affect the resulting detector. We should also decide whether we would use the original 

image sizes of the inputs or resize it similarly to the training set. We should also consider 

the object sizes of the synthetically generated data. And since the training of a CNN takes 

a rather long time, we might not have the liberty to try a wide range of options to 

empirically find ones that produce a good result. 

 

4.4 Training set 

 

The training set had to be prepared according to the final goal and the planned 

training procedure. 

By “final goal”, it is meant what signs are desired to be detected, what signs are 

intended to be treated as background, and finally, what signs are not relevant, meaning 

that it does not matter if they are detected or not. 
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To give some examples, the overhead motorway signs are intended as the target 

classification groups with only two types. Sometimes, there are small orange signs on top 

of these marking the road codes; these would be intended to be treated as background and 

not signs. Similarly, any orange road code signs within the intended overhead directional 

signs are not to be detected separately on their own. Finally, there are other motorway 

signs on both sides of the road; these are signs that are not relevant. So, whether they are 

detected or not, they would not count as a positive or negative detection. 

How to treat the first group is obvious: examples of this group are placed in the 

training set and marked by their classification and location for the training. The last group 

is also somewhat easier to handle. No care is taken to see that the model would detect 

them and similarly, no care would be taken to see that they would be treated as 

background either. They can be left out of the results in the test set, without having them 

affect the results positively or negatively. The second group is a bit more complicated. If 

there are signs that we certainly do not want the model to detect as an object, we need to 

provide examples of them in the training set where they are not marked as the object so 

that the model would be trained to ignore them and treat them as background. This method 

has been put to test in a later version of the synthetic data. The model trained with the 

earlier version with no negative examples would rarely pick up the orange signs on top 

of the intended directional signs, as well as, again rarely, the orange code sign within the 

intended directional signs. A later version of the synthetic data generation code started 

placing some orange signs in the background images randomly and this helped the model 

to distinguish them as background when they are on top of other signs and as not separate 

objects when they are on the intended target road signs. 

Another design issue with the training set generation is the size of the training 

images and the size of the classification objects on those signs. As will be mentioned in 

the next section, hardware limitations might require us to use smaller sized images for 

being able to train our model with the GPU memory we have. Having the training set and 

real-world input data images in different sizes would lead us to consider various other 

factors such as the anchor box sizes and the minimum dimensions of the signs that need 

to be detected. This would in turn lead us to consider the sizes of the target objects that 

would be used in the synthetically generated training data. For example, if we do not 

intend to detect sign smaller than 50 pixels in width, we would arrange both the anchor 

boxes and the synthetic signs that way. But if we are required to use half the image size 

for training then we would need to either include half the minimum size of the anchor 
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boxes for the training or we would not use twice the minimum size criterion so that they 

would not be smaller than the minimum size when the image is reduced in size for the 

training. 

Other important factors in the test set can be the color variations in the background 

and in the objects, making sure to include in the background other image patches that 

might be falsely detected as objects 

 

4.5 Training 

 

The hardware capabilities are almost always a limiting feature in Deep Learning. 

Computer memory and, even more often, GPU memory limits the amount of data that can 

be processed. As such, the GPU array were not enough to train the network with the 

desired parameters. The first resort to remedy the situation is usually decreasing the input 

size and the second is usually decreasing the mini-batch size. 

Various parameters were tested to see if the process can go through with the 

training by using such parameters. The training would be run with a small number of 

epochs such as 2 or 4 and if the training would complete without any memory errors then 

it would be run with longer epoch parameters such as 20 or 30. Two combinations that 

worked with the available hardware were: 

• ¼ input image size (480x270 pixels) and a mini-batch size of 8 

• ½ input image size ((960x540 pixels) and a mini-batch size of 4 

There is no set limit on the mini-batch size. It seems that various opinions indicate 

that they should be in the range of 1 to 32. Both mini-batch sizes seem to work fine in 

different training trials. 

The image size, however, is a different matter. When ¼ reduction is used, we have 

to plan the positive sample sizes in the synthetically generated sets and the anchor box 

sizes carefully. 

As mentioned at the end of the subsection on anchor boxes, the training takes a 

considerable amount of time. With the set up available configuration it took around 14 

hours to train with 2000 ½ size (960x540 pixels) images. So, both the training set and the 

training parameters require careful consideration as repeating the training due to bad 

parameter set up is costly in time. 
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4.6 Test set 

 

The regular test set is created using a video camera installed inside a vehicle. The 

scenes were recorded in May 2019 on the motorways in İzmir between Bornova and 

Çeşme. No special consideration is taken for the setup; that is, no special cleaning is done 

on the windshield, no caution is taken against reflections from the windshield. However, 

the recordings were made between noon and 17:00 to make sure the lighting conditions 

are not adverse or extreme. 

The images are used as they are, read straight from the video file frame by frame 

during the testing and used in their original 1920x1080 size. 

Although initially a separate labeling code was used written through modifications 

on an available code from another research, in the final stage of the work, Matlab’s 

“Video Labeler” app from its Image Processing and Computer Vision Toolbox was used 

for convenience. This toolbox had a KLT Tracker functionality, so it was possible to 

spend less time on marking and have the app mark a great number of frames on its own 

using the tracker as long as the initial marked sample was not too much bent out of shape 

and the final signs in the far distance were not very small for the tracker to falsely track. 

The initial manual markings were done when the signs were fairly close but not so close 

that they are bent out of shape due to lens distortion. The tracking feature was used in 

reverse so that the KLT Tracker would track the large sign backwards as it gets smaller 

and smaller. 

The model did not seem to have a serious problem with false positives so initially 

only frames that contained the target signs were used. 

It was observed that the targeted overhead signs appeared when there are exits in 

the motorway so the number of different instances of such signs was strictly limited to 

the number of exits in the motorway route used. However, since the frames were directly 

taken from a video recording, each instance of a sign would produce around a hundred 

frames of testing data in different sizes and locations according the time it can be seen in 

the view, considering the recordings are taken at a rate of 30 frames per second. 

Other motorway signs on the side of the road were marked as “other”, a third, 

non-trained category, only to be ignored in the testing so that a positive or negative 

detection on this “other” class would not affect the experiment results positively or 

negatively. 
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CHAPTER 5  

 

EXPERIMENTS AND RESULTS 

 

5.1 Software and hardware 

 

Generation of the synthetic data, modeling of the Convolutional Neural Network, 

training, annotation of real-world video frames, testing, and experimentation were all 

performed using MATLAB (R2019a) on Windows 10. 

Although the coding part was done on two laptop computers, the code was run on 

a computer with Intel Core i7-8750H CPU and NVIDIA GeForce GTX 1060 GPU. 

The real-world videos were recorded by a dashboard camera in 1920x1080 

resolution and 300 fps. 

 

5.2 Settings 

 

The videos were recorded in the motorways of İzmir between Bornova and 

Çeşme. The videos used for testing were recorded in May 2019 mostly between the hours 

of 12:00 and 17:00. The frames were fed and processed in their original resolution. 

The output of the detector was passed through a very simple filter to eliminate the 

obvious false results using size and position. Furthermore, the testing was done for the 

ground truth elements that are neither very far, nor very near. This was due to the fact that 

for practical applications, very far signs that are nor really legible are not valuable for 

detection, as well as the very near signs that would have already been detected. However, 

it must be stated that the elimination of the very near signs may have dropped the false 

negative rates for two reasons: 1) the signs go through a more pronounced lens distortion 

when they are near, and thus, towards the outer parts of the camera view, and 2) it gets 

harder to detect and classify the target classes that are partially visible and partially out 

of the range of view. 

Initial testing was done only on frames that contained the target classes. Although 

this may seem to underrepresent the false positives rate, it is worth mentioning that in the 

696 frames that contained the target classes, there were only 2 false positive detections 
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that were not related to signs so inclusion of frames with no signs is not expected to 

change the false positive rates much. Through manual experimentation, it was observed 

that false positives were only a minor problem; therefore, a lower threshold probability 

of 0.3 was used for the detector instead of the generally accepted 0.5. For ruling a match 

(true positive) or a mismatch (misclassification) an Intersection over Union (IoU) value 

of 0.5 is used. 

 

5.3 Initial experiments 

 

Initial experiments are done with 4 3-minute videos. 696 frames containing 16 

unique instances of the target classes from varying distances were used for testing. No 

detailed filtering or tracking were applied although it was obvious that they would be easy 

to implement and would improve the performance. 

 

Table 1. Performance of initial experiments 

 Class1 Class2 

Ground truth data 345 280 

True Positives 307 151 

Misclassifications 0 57 

False Negatives 38 72 

False Positives 20 0 

 

The initial results indicate that the detector for class 1 is more eager. It detects 

89% of its targets, misses only 11%. The false positives it generates are usually related to 

other sign-related picks and only 2 of those are unexplained detections from the 

background. 

Class 2, when compared, is more recessive. It detects 54% of its targets, mainly 

because a 20% is misclassified by a greater probability by the class 1 detector. The 

remaining 26% is not detected by any detector. This is probably due to the fact that nearly 

half of the class 2 signs are on the exit lane on the side of the road so that they are greatly 

affected by lens distortion and either not detected or although detected, misclassified due 

to the higher probability from the other detector. Class 2 detector does not interfere with 

the other class by triggering misclassifications. 
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We can turn this table into a detection table, rather than a classification table, by 

simply treating both classes as one and treating misclassifications as true positive 

detections. Then we would have the following table showing an 82% detection rate. 

 

Table 2. Detection performance of initain experiments 

 Object 

Ground truth data 625 

True Positives 515 

False Negatives 110 

False Positives 20 

 

5.4 Further refinements 

 

Although the results are better than what can be achieved with color-based 

methods, there is still much room for improvement. 

First of all, the synthetic training data can be modified to be closer to the real 

world. There turns out to be some class 1 objects with a 1:1 aspect ratio in the testing data 

which we did not have in our synthetic set. The class 2 signs in the real-world are almost 

never located on the left half of the view while our synthetic data does generate quite a 

lot of class 2 objects on that side. Almost all of the class 2 signs that are misclassified as 

class 1 have the sky as their background and the class 1 detector selects a portion of that 

blue sky background from the right side of those signs; this maybe probably due to the 

fact that the background images used for synthetic data generation were all from a certain 

portion of the motorway where the right side of the road had a hill with greenery in the 

background. The detector may have associated the class 1 signs with blue background of 

sky, as is the right side of the background images used for generating synthetic data. 

Other color-based checks can also be done to filter most of the false positives. For 

example, in some cases, the detector picks up some road construction notices with some 

text on a yellow-orange background. It might be picking up “text on a solid background” 

without a differentiation of the color of the background. This can be remedied either by 

using some similar negative examples in the background of the synthetic data generation, 

or, rather, by using a simple ratio-of-colors check on the detected regions to ensure that 

they are indeed in line with what is expected. 
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Below, you can see two detection annotations of the same frame. The orange road 

code sign was falsely detected as a sign with an earlier version of the training set because 

the target signs contained such portions and there were no such negative examples in the 

background. Using a refined version of the synthetic data generation code, such orange 

road code images were included in some of the background images for training. As a 

result, they are not falsely detected any more. 

 

  

Figure 19. Orange signs before and after adding negative samples in training 

 

As can be seen below, simple false positives can easily be filtered out by using a 

check on the location and size of the bounding boxes. 

 

 
 

Figure 20. Most false positives can be corrected with location and size filters 

 

Other types of signs can easily be falsely detected. These can be corrected either 

by providing negative samples in the background of the training data or by simple post-

processing filters. The sign below can be filtered out by a color content ratio filter. 

 

 

Figure 21. Other signs require extra measures 
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5.5 Further testing 

 

Further testing was done with a larger set test data which consisted of two separate 

frame sets: one with positive samples and one with no positive samples. The positive 

sample set had 2075 image frames that contained multiple samples of 54 unique instances 

of overhead signs (20 continuing and 34 exit signs) from various distances and angles and 

in various settings (inside and outside the city limits, with and without traffic, various 

background scenes, etc.). These frames contained 3490 positive samples of the signs, of 

which a small portion (137) were later excluded in some tests to have meaningful sized 

samples. The continual / exit signs ratio was around 7 / 10. 

It must be noted that some extra filters were applied for the final testing stage of 

the detector. The outputs of the detector were filtered by location, size, aspect ratio, and 

color content to weed out false positives. 

 

5.5.1 . The effect of target object area 

 

The tables below show that the area (in pixels) of the target objects affects their 

detectability to a large degree as expected. 

 

Table 3. TP and FN rates for continuing lane signs by sign area in pixels 

Cont signs ≥1.000 ≥2.000 ≥4.000 ≥8.000 ≥16.000 ≥32.000 ≥64.000 

TP 0 81 364 350 254 166 24 

FN 9 109 34 0 0 0 0 

TP% 0% 43% 91% 100% 100% 100% 100% 

 

Table 4. TP and FN rates for exit lane signs by sign area in pixels 

Exit signs ≥1.000 ≥2.000 ≥4.000 ≥8.000 ≥16.000 ≥32.000 ≥64.000 

TP 0 91 419 443 238 55 2 

FN 153 409 137 13 2 0 0 

TP% 0% 18% 75% 97% 99% 100% 100% 

 

Naturally, it gets harder to detect the signs as they get smaller. As they get larger, 

a larger percentage is detected. With the continual signs, this detection rate reaches a 

perfect peak very quickly, but with exit signs, it takes a bit longer. This may be due to 

several reasons. One can be that as the exit signs being usually rectangular, and thus, 
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taking the smallest dimensions. Another can be due to the fact that half the exit signs are 

located on the far right side of the view and get affected by radial lens distortion more. 

As the exit lanes are a separate category, it may be that the detector was not well trained 

for this category. 

Since training is mentioned, this should be a good point to mention some of the 

manually selected parameters for creating the training set and the hyperparameters for 

training. 

First, as the training set is created synthetically, the parameters used in this 

creation may affect the results of the detectors. If the parameters do not match the real-

world values, we can be training our detectors to look for wrong clues. 

Furthermore, there may be some hyperparameters in the training stage that may 

affect the behavior of the detectors. For the Faster R-CNN, there is a hyperparameter 

called “anchor box” sizes. This refers to the possible shapes and sizes of the objects and 

is usually determined through a statistical manner, such as k-means clustering, from the 

real-world data in the training set. As our training set is synthetic, we do not have any 

real-world values to consider for this parameter, so it is simply manually estimated. 

Finally, we may not have included very small samples in our synthetic training 

set so that may as well be another reason for the problem in detecting small objects. 

 

 

Figure 22. Sensitivity rates by target object area in pixels 
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5.5.2 . The effect of detector threshold 

 

The threshold for the detector naturally affects its ability to detect correctly; 

however, its effects are not very dramatic. There does not seem to be a “sweet spot” for 

the threshold that would produce an “elbow point” in detection or misdetection rates. A 

detector threshold of 0.3 is used in testing and comparison purposes although even a lower 

rate seems to be viable. 

For threshold analyses, a minimum target object height condition was applied as 

explained before and the total positive sample numbers became 3353, of which 1391 were 

continuing lane samples and 1962 were exit lane samples. 

The “sensitivity” is also called “recall” or “true positive rate” (TPR) and is 

calculated as the ratio of positive samples detected. 

 

 

Figure 23. Sensitivity rates with varying detection thresholds 

 

Precision or positive predictive value (PPV) is calculated as the ratio of true 

positives to all positive predictions. 
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Figure 24. Precision rates with varying detection thresholds 

 

As seen in the previous graph, precision rate follows a rather flat pattern without 

any elbow formation and has a very rate of 80% and above in general. What is more 

interesting is that the false positive and false negative rates in this analysis are in fact 

much better than it looks in these statistics. 

Upon examining the detection boxes, it was clear that the post-detection filters 

were working wonderfully and there were no false positive detections in unrelated areas 

of the frames. All false positives were due to badly sized detection boxes where the 

detection box does contain the target object but as the box is so large, the IoU (Intersection 

over Union) ratio is below the threshold, causing an increase in both false positives and 

false negatives. 

Although the false positives are made up of true positive detections with bad 

bounding boxes, the number of such false positives are still very low, making the 

precision statistics good. 
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Figure 25. Precision-Recall curve for continuing lane sign detections 

 

 

Figure 26. Precision-Recall curve for exit lane sign detections 
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The exit lane sign detector seems to be somewhat problematic with quite high 

false negative rates accompanied by very low false positive rates. It seems that its detector 

makes less detections, causing very low false positive statistics and very high false 

negative statistics. 

The numerical data is presented in the following figures for further reference. 

 

 

Figure 27. TP, FP, FN statistics for continuing lane sign detection 

 

 

Figure 28. TP, FP, FN statistics for exit lane sign detection 

 

5.5.3 . The effect of post-detector filters 

 

The main purpose of the filters is to eliminate or “filter out” the bad detections. 

This carries a chance of removing true positives as well as false positives and false 

negatives. The precision curves indicate that the filters work good in eliminating false 

positives effectively without disturbing the true positive numbers. In addition, when 

applied on their own, the location filter seems to be more effective than the color filter. 

 

Threshold 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

TP 1289 1275 1266 1250 1244 1239 1228 1224 1219 1208 1200 1187 1176 1164 1153 1139 1116 1093 1038

FP 370 356 344 332 321 309 298 288 281 269 264 260 251 242 232 226 218 204 187

FN 102 116 125 141 147 152 163 167 172 183 191 204 215 227 238 252 275 298 353

Sensitivity 93% 92% 91% 90% 89% 89% 88% 88% 88% 87% 86% 85% 85% 84% 83% 82% 80% 79% 75%

Precision 78% 78% 79% 79% 79% 80% 80% 81% 81% 82% 82% 82% 82% 83% 83% 83% 84% 84% 85%

Threshold 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

TP 1333 1313 1298 1274 1261 1248 1236 1225 1213 1205 1195 1186 1171 1160 1149 1130 1111 1076 1003

FP 66 62 57 54 51 53 50 50 47 48 48 49 52 50 43 39 36 35 35

FN 629 649 664 688 701 714 726 737 749 757 767 776 791 802 813 832 851 886 959

Sensitivity 68% 67% 66% 65% 64% 64% 63% 62% 62% 61% 61% 60% 60% 59% 59% 58% 57% 55% 51%

Precision 95% 95% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96% 97% 97% 97% 97%
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Figure 29. The effect of filters on precision statistics 

 

The sensitivity curves show that neither filter has much of an effect on class 1 as 

all curves coincide on top of each other. For class 2, however, location filter does not 

have much of an effect, its curve coinciding on top of the curve with no filters, while the 

color filter eliminates a small number of true positives, decreasing the sensitivity. 

 

  

Figure 30. The effect of filters on sensitivity statistics 

 

The numerical data is presented in the following figures for further reference. The 

f0, f1, and f2 suffixes indicate no filters, filter 1 (location) only, and filter 2 (color), 

respectively. The number before those suffixes indicate the class of the object. 
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Figure 31. TP, FP, FN statistics by filters for continuing lane sign detection 

 

 

 

Figure 32. TP, FP, FN statistics by filters for exit lane sign detection 

 

Threshold 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

TP1 1289 1275 1266 1250 1244 1239 1228 1224 1219 1208 1200 1187 1176 1164 1153 1139 1116 1093 1038

FP1 370 356 344 332 321 309 298 288 281 269 264 260 251 242 232 226 218 204 187

FN1 102 116 125 141 147 152 163 167 172 183 191 204 215 227 238 252 275 298 353

Sensitivity 93% 92% 91% 90% 89% 89% 88% 88% 88% 87% 86% 85% 85% 84% 83% 82% 80% 79% 75%

Precision 78% 78% 79% 79% 79% 80% 80% 81% 81% 82% 82% 82% 82% 83% 83% 83% 84% 84% 85%

TP1f0 1289 1275 1266 1250 1244 1239 1228 1224 1219 1208 1200 1187 1176 1164 1153 1139 1116 1093 1038

FP1f0 798 648 580 538 506 476 457 435 420 398 390 381 357 342 316 303 286 260 233

FN1f0 102 116 125 141 147 152 163 167 172 183 191 204 215 227 238 252 275 298 353

Sensitivity 93% 92% 91% 90% 89% 89% 88% 88% 88% 87% 86% 85% 85% 84% 83% 82% 80% 79% 75%

Precision 62% 66% 69% 70% 71% 72% 73% 74% 74% 75% 75% 76% 77% 77% 78% 79% 80% 81% 82%

TP1f1 1289 1275 1266 1250 1244 1239 1228 1224 1219 1208 1200 1187 1176 1164 1153 1139 1116 1093 1038

FP1f1 475 425 394 375 354 339 326 312 304 291 284 280 266 256 242 236 228 211 191

FN1f1 102 116 125 141 147 152 163 167 172 183 191 204 215 227 238 252 275 298 353

Sensitivity 93% 92% 91% 90% 89% 89% 88% 88% 88% 87% 86% 85% 85% 84% 83% 82% 80% 79% 75%

Precision 73% 75% 76% 77% 78% 79% 79% 80% 80% 81% 81% 81% 82% 82% 83% 83% 83% 84% 84%

TP1f2 1289 1275 1266 1250 1244 1239 1228 1224 1219 1208 1200 1187 1176 1164 1153 1139 1116 1093 1038

FP1f2 375 361 349 337 326 314 303 293 286 274 269 264 255 246 236 230 221 207 189

FN1f2 102 116 125 141 147 152 163 167 172 183 191 204 215 227 238 252 275 298 353

Sensitivity 93% 92% 91% 90% 89% 89% 88% 88% 88% 87% 86% 85% 85% 84% 83% 82% 80% 79% 75%

Precision 77% 78% 78% 79% 79% 80% 80% 81% 81% 82% 82% 82% 82% 83% 83% 83% 83% 84% 85%

Threshold 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

TP2 1333 1313 1298 1274 1261 1248 1236 1225 1213 1205 1195 1186 1171 1160 1149 1130 1111 1076 1003

FP2 66 62 57 54 51 53 50 50 47 48 48 49 52 50 43 39 36 35 35

FN2 629 649 664 688 701 714 726 737 749 757 767 776 791 802 813 832 851 886 959

Sensitivity 68% 67% 66% 65% 64% 64% 63% 62% 62% 61% 61% 60% 60% 59% 59% 58% 57% 55% 51%

Precision 95% 95% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96% 97% 97% 97% 97%

TP2f0 1354 1333 1318 1291 1277 1263 1250 1239 1226 1218 1206 1196 1181 1170 1159 1140 1121 1086 1012

FP2f0 109 93 83 75 71 72 70 68 65 65 65 64 68 65 56 50 45 43 41

FN2f0 608 629 644 671 685 699 712 723 736 744 756 766 781 792 803 822 841 876 950

Sensitivity 69% 68% 67% 66% 65% 64% 64% 63% 62% 62% 61% 61% 60% 60% 59% 58% 57% 55% 52%

Precision 93% 93% 94% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 96% 96% 96% 96%

TP2f1 1354 1333 1318 1291 1277 1263 1250 1239 1226 1218 1206 1196 1181 1170 1159 1140 1121 1086 1012

FP2f1 97 83 74 67 63 64 61 59 55 56 56 56 60 58 50 45 41 38 37

FN2f1 608 629 644 671 685 699 712 723 736 744 756 766 781 792 803 822 841 876 950

Sensitivity 69% 68% 67% 66% 65% 64% 64% 63% 62% 62% 61% 61% 60% 60% 59% 58% 57% 55% 52%

Precision 93% 94% 95% 95% 95% 95% 95% 95% 96% 96% 96% 96% 95% 95% 96% 96% 96% 97% 96%

TP2f2 1333 1313 1298 1274 1261 1248 1236 1225 1213 1205 1195 1186 1171 1160 1149 1130 1111 1076 1003

FP2f2 66 62 57 54 51 53 50 50 47 48 48 49 52 50 43 39 36 35 35

FN2f2 629 649 664 688 701 714 726 737 749 757 767 776 791 802 813 832 851 886 959

Sensitivity 68% 67% 66% 65% 64% 64% 63% 62% 62% 61% 61% 60% 60% 59% 59% 58% 57% 55% 51%

Precision 95% 95% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96% 96% 97% 97% 97% 97%
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5.5.4 . A note on “other” categories 

 

Although this work concentrated on motorway overhead directional signs, there 

are still motorway signs that are not overhead or directional, as well as overhead signs 

that are not directional or not specifically for motorways. Such signs are considered as 

“other” categories because an extension of this work might later include such categories. 

In addition, color-based methods do not distinguish the signs by their content and 

the motorway signs that are not directional of overhead can also be detected without 

classification. So, in this work, other motorway signs (not overhead and/or not 

directional) are ignored and assigned to an “other” category to avoid confusion in the 

resulting statistics. In fact, in the final stage, only scene frames with motorway overhead 

directional signs were selected to avoid any confusion. 

 

5.5.5 . The case with negative samples 

 

The case with negative samples in object detection, localization, and multiple 

object detection is slightly different from general data classifications. As previously 

explained, the location and size of a detection bounding box is important as a misplaced 

and/or mis sized bounding box can turn a single true positive detection into a false positive 

and a false negative detection together. 

Another issue is with the true negative statistics. A “true negative” case in the 

setting of this work is a traffic scene frame that does not contain any positive samples. 

However, in truth, localization of multiple objects in a single frame means that the 

detector is already going through multiple “true negative” regions of a single frame to 

detect and localize the “true positive” region in a frame with a positive sample. 

Furthermore, when going through a dashboard video, a very large ratio of the 

frames would not contain the determined positive sample signs. Thus, a video would 

consist mainly of negative sample frames. This would result in negative samples 

dominating the analysis of the detectors which would not be very informative. 

As a result, most of the analysis is done with frames containing positive samples. 

Since this is also leaves a part of the analysis out, a separate study is made using only 

negative samples, i.e. scenes containing no positive objects. 
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For this a separate set of frames with no positive samples are formed. 622 frames 

are selected from the motorway from different locations, containing different scenery e.g. 

trees, greenery, buildings, mountains, cars / no cars, trucks, side rails / no side rails, 

overpasses, etc. 

Although the detector could produce some false positives in those negative sample 

set, all these false positives could easily be filtered with a post-detection filter using size, 

location, and color content information. However, this was done as part of a comparison 

with the color-based method so the detailed results will be presented in the following 

section. 

 

5.5.6 . The effect of the selected IoU threshold 

 

Intersection over Union (IoU) ratio has turned to be a standard in determining the 

correctness of localization of objects. However, as will be explained in the coming 

section, localization problems lead to misleading true positive, false positive and false 

negative statistics. The effect of this can be observed on the change in these statistics 

when using the same detection methods but with different IoU thresholds for marking 

localizations correct or otherwise. 

As can be seen in the next figure, the detectors work fine and do not report many 

false positives, partly thanks to filters. This means that they do not misdetect non-existent 

objects. However, their localization can be problematic, causing the detections to be 

reported as false positives and false negatives as the IoU measure can fall below the 

selected criteria. 

The following figure confirms this case. When the IoU ratio criterion is low (0.3 

and below), the precision statistics approach to 100%. They also approach to zero when 

the criterion is very high, i.e. 90%, but this is a common issue. 
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Figure 33. The effect of IoU criterion on precision statistics 

 

Sensitivity statistics also tend to remain rather stable for IoU ratios of 40% and 

below. 

 

 

Figure 34. The effect of IoU criterion on sensitivity statistics 
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5.6 A comparison with hard-coded color-based methods 

 

“Vision-based road sign detection” paper [4] was the starting point of the hard-

coded color-based methods used for comparison. An overview of how these methods 

were applied is briefly described in Chapter 2 of this work. In this section, a comparison 

is made with such a method. 

 

5.6.1 . A qualitative comparison 

 

This use of CNNs start on the same level of input with color-based hard-coded 

methods, having no initial data set for training, but they produce better results in general. 

This is mainly because the color-based methods do not seem to be robust to minor changes 

in the environment. Although the color-based method uses the Hue values to be more 

robust, lighting conditions still affect them. 

The unbeatable advantage of the Faster R-CNN architecture over color-based 

methods is that it provides detection, classification, and localization, all in one go. Color-

based methods locate possible regions that might contain the object classes, but they 

cannot produce the level of classification CNNs can offer. 

Another interesting point is the false positives rates. Color-based methods initially 

find many possible regions for the signs to be present. Many parts of a rural motorway 

scene can include regions that can pass the color-based filtering, such as a clear dark blue 

sky, greenery on the side of the road, a patch of blue sea in the distance, etc. That means 

many false positives in the initial sweep. While these possible regions can be further 

processed to eliminate the false positives, this process requires extra work and does not 

always produce satisfactory results. In addition, there is always the chance of an unrelated 

object having the same color mix as the overhead signs to make it past the filters as a false 

positive. 

There is also the complication of different colored boxes within the motorway 

directional signs. Not only do blue and brown backgrounds cause a degree of separation, 

white backgrounds cause even more problems as white is not a color that can be selected 

on the 360-degree hue range. Sometimes such different colored boxes, the white text, and 

the white arrow signs might cause a color-based system to treat a single sign as two signs 

separated by those colored parts. 
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In comparison, CNN techniques tend to pick their proposed detection boxes by 

relying more on the texture content. This helps the detector to distinguish better among 

the texture contents of the regions rather than color similarities and possible color 

variations. However, CNNs can misdetect regions with different texture such as the back 

windows of cars, flat and dull colored vehicle bodies, rails on the side, etc. Luckily, these 

regions can easily be filtered by their location in the image and by their color content. 

In addition, there is the situation of rating the likelihood of a match. CNN 

techniques provide naturally a likelihood rating of a match. Color-based methods 

concentrate on producing possible regions for an object, but they do not inherently have 

a rating system for likelihood of a match. 

The problematic part with the Faster R-CNN methods is the hyperparameters to 

be selected at the time of training. Anchor boxes is one of those hyperparameters that is 

very hard to judge. Normally, when real-world data is used for training, anchor box 

hyperparameters can be evaluated from what is available in the training data, usually 

through a k-means clustering algorithm. But without real-world data, as in our case, one 

has to make estimations for the anchor box values. 

This is an advantage for color-based methods. When the color of the signs are 

within the expected range and the foreground is distinctively different, color-based 

algorithms can clearly determine the boundaries of the regions of interest (ROI)s. The 

Faster R-CNN method, however, may have to depend on the anchor box hyperparameters 

defined and may not determine the boundaries as closely as expected. 

But overall, color-based systems can be useful in producing possible regions or 

filters for detection but for the more important part of classification and assigning 

probabilities, they need to switch to other methods and algorithms, of which CNNs are 

likely to be preferred. So, it is also intuitive to start with CNNs in the first place and 

complete the whole process in one sweep of a single method. 

The best method might be to use the best of both worlds by combining the two 

methods. The color-based methods can support the CNN methods for performance 

improvements. While earlier works in literature would start with a color-based filtering 

and then move on to other classification methods, including CNNs, the reverse might be 

productive as well. The CNNs work very good in detecting, classifying and localization 

but the errors they make seem to be simple ones that can be detected by color-based 

methods. So, while CNNs perform better on their own than methods that start with color-
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based operations, CNNs can still benefit from a simple color-based filtering action after 

the CNN-based detection is performed. 

 

5.6.2 Comparison through external examples 

 

In the figure on the next page, you can find some examples scenes from the 

Internet processed by a color-based code (on the left) and the Faster R-CNN trained by 

synthetic data (on the right). The images are selected from the Internet to provide a 

variation in size, contrast, and color in order to how the two methods generalize to 

samples from different sources. 

In the first two examples, it can be seen that the color-based method can have 

problems in separating two signs side by side. This is a common case. The color-based 

method seeks regions containing the desired color-content and selects the connected 

components in such regions. If two signs are very close or have a background containing 

the desired color, the regions of the two signs get merged. 

In the third example, it can be seen that when a sign has too much of different 

colored backgrounds, it may be treated as a different object due to filtering. 

The fourth example is also interesting because color-based method misses obvious 

signs; the initial color-scanning might have included the sky on the background and the 

large selection might have been rejected by color-rate, size, or location filters. 

The Faster R-CNN does a good job in detecting the two separate signs, as well as 

another sign further away. However, it does not classify them successfully and the 

bounding box areas are not very accurate as we would expect. Such accuracy problems 

with the bounding boxes cause other problems with the performance statistics as we will 

see in the following sections. 

The worst part of the results of the color-based methods is that they tend to vary 

drastically with lighting conditions and color distribution in the images. Since the coding 

is done manually (assuming that we do not have any training set to start with), any 

variation in the test set (direction of light, cloudiness, shadows, etc.) causes problems. 
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Figure 35. Color-based and R-CNN applied to images from Internet 

 

5.6.3 Comparison through negative samples 

 

As explained in the previous section, a separate data set of negative samples was 

formed by selecting 622 frames on different locations of the motorway containing 

different scenery and other objects. 

Both the color-based detector and various variations of the Faster R-CNN 

detectors were very successful with the negative samples, provided that the outputs are 

passed through various filters. 
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Table 5. Comparison of false positives on a negative sample set 

Method Color-Based Faster R-CNN 

Initial FPs NA 73 

After location filter Included 16 

After color filter Included 0 

Final FPs 6 0 

 

The color-based method seems to perform good. However, it must be stated that 

this is not the case in general. There are usually objects or background regions that can 

easily interfere with the color-based selection scheme. For example, if we were to detect 

regular highway overhead signs, their blue background would usually mix up with the 

blue sky in the background depending on the weather and lighting conditions. Similarly, 

the greenery on the side of the road gets selected very often by the color-based algorithms. 

Therefore, such algorithms should contain location, size, aspect ratio filters inside them; 

otherwise, the number of false positives would really be very high. 

The two false positive frames in the following figures show that there are 

situations that the color-based method cannot escape from. 

 

 

Figure 36. A false positive example from the color-based method 

 

A high vehicle, such as a truck, with a color content similar to the target objects 

can easily be detected by the color-based methods. In this case, the location of the region 

in the image, size and aspect ratio of the selection, as well as the color content were all 

appropriate to make this selection get past the filters. 
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Figure 37. A false positive example from the color-based method 

 

Furthermore, such problems with the colored sides of high vehicles would be 

augmented since the vehicles causing the problem are moving in the same direction with 

the camera recording. While only two frames were selected from this scene to make up 

the negative sample data set, the original video recording would have numerous frames 

until the vehicle is passed. Since the vehicle is moving in the same direction, there would 

be even more frames than a stationery item in the scene would have. 

Faster R-CNN method trained by synthetic samples does not perform very good 

on its own. There are many initial false positive outputs and a manual check reveals that 

they are selections that really do not resemble the target objects. This turns out to be a 

strength because then it is very easy to filter them based on their location, size, aspect 

ratio, and color content. 

The table in the previous page might seem to suggest that false positives are better 

filtered through location/size filters but that is only because those filters are used as the 

first filtering stage as it is a much faster process compared to color content filtering. 

 

5.6.4 Comparison through positive samples 

 

Another comparison is made using the positive samples data set used in the 

previous section. Here, there are 2075 image frames, containing 3051 positive samples 

obtained from 54 unique instances of signs. 
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As the color-based method does not distinguish between sign types, the two-class 

output of the CNN detector was also combined into a single class. The comparison table 

is presented below with regular IoU of 0.5 and a test IoU of 0.3. 

 

Table 6. Comparison of performance on positive sample set 

Method C-B C-B IoU3 CNN CNN IoU3 

TP 1987 2245 2451 2550 

FP 329 43 290 9 

FN 1064 806 600 501 

Sensitivity 65% 74% 80% 84% 

Precision 86% 98% 89% 100% 

 

The numbers in this table show that the CNN detector performs better than the 

color-based method. But as explained before, these numbers do not reflect the exact 

detection performance due to the way bounding boxes are formed. Although both 

methods seem to exhibit many false positives, the actual outputs do not contain any output 

that is not associated with any signs. This is more evident from the drop in false positivies 

when a lower IoU of 0.3 is used. 

Color-based methods have the problem of the content of signs dispersing the 

important colors and separating the detected regions such as in the examples below. 

The images in the figure all show that signs are detected by a color-based method 

but as the signs are far, the images are small and the regions get separated by the content 

on the signs. This makes the statistics look much worse than the performance of the 

algorithm. For example, for the sign on the right, the white background and the arrow 

sign divides the color regions. The color-based method outputs two regions, which are 

actually part of a positive sample, but this output only results in two false positives (small 

portions of a sign) and one false negative (the majority of the sign region not detected). 

 

   

Figure 38. Problem of separated regions with color-based methods 
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Figure 39. Problem of missized bounding boxes with CNN methods 

 

R-CNN methods experience a similar problem due to the anchor box 

hyperparameters and errors in sizing and localization. The two detection boxes above 

correctly detect the signs, but the bounding box sizes were not determined correctly. In 

both cases, although the detections were correct (true positive), the IoU (Intersection over 

Union) criteria results in one false negative (IoU below threshold) and one false positive. 

Other similar problems occur for both methods when the bounding boxes are not 

set up correctly and contain the combination or parts of two signs as can be seen in the 

figure below. Such problems not only increase the false positive figures, but also the false 

negative ones. 

 

  

  

Figure 40. Boundıng box problems with both methods 
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5.6.5 Speed comparison 

 

A speed comparison of the Faster R-CNN method and the color-based method is 

done on the positive and negative sets. These two sets are used separately to see if the 

existence of target objects may differ the processing time. 

In addition to the two methods, optional pre-processing and post-detection filters 

are also timed to see if their positive effects are worth their toll on the time. 

The tests are done in the MATLAB interpreter environment without any special 

configurations such as compiled codes or functions; therefore, the times do not indicate 

the real speed that could be reached with a compiled language. No special measure is 

taken to utilize the GPU; however, MATLAB does seem to utilize it on its own. Thus, 

the results here are only for comparison and should not be taken as the expected speed 

with specialized software and hardware setups. Timings are measured on a single call of 

the methods for each frame (rather than repeating several calls and averaging) since this 

would be the regular way they would be run. 

The results of the timing test on the positive set is presented in the following table. 

As can be seen, The Faster R-CNN method takes 63% more time on its own. The optional 

pre-processing filter takes a noticeable time so its usefulness can be reviewed. The 

optional location filter takes an insignificant time as its work is done only on the location 

parameters of the bounding boxes which is why this filter is applied before the color-

content filter. The optional color filter takes a very small amount of time. 

 

Table 7. Speed measurements on the positive set 

Method Cumulative time Counts of pass Average time 

Color-based 1029,71 sec. 2075 0,49624 sec. 

Faster R-CNN 1683,12 sec. 2075 0,81114 sec. 

Opt. pre-processing 124,01 sec. 2075 0,05976 sec. 

Opt. location filter 0,17 sec. 1857 0,00009 sec. 

Opt. color filter 22,88 sec. 1847 0,01239 sec. 

 

The results of the timing test on the negative set is presented in the following table. 

The results seem to be similar for both sets. Post-filters seem to differ in terms of ratio, 

but since their times are already low, it may be due to measurement errors and they do 

not contribute a significant change on the overall figures anyway. In addition, there seems 
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to be a drop in the Faster R-CNN timing, but without going into the statistical significance 

of this drop, we can conclude that it is still significantly slower than the color-based 

method. 

 

Table 8. Speed measurements on the positive set 

Method Cumulative time Counts of pass Average time 

Color-based 312,90 sec. 622 0,50306 sec. 

Faster R-CNN 474,79 sec. 622 0,76333 sec. 

Opt. pre-processing 37,42 sec. 622 0,06016 sec. 

Opt. location filter 0,01 sec. 70 0,00012 sec. 

Opt. color filter 0,12 sec. 15 0,00821 sec. 

 

As mentioned above, these are timings from MATLAB’s interpreter and using a 

compiled version would naturally run faster. But for real-time purposes, we would still 

need a faster CNN architecture such as YOLO or SSD to work with the common 30 

frames per second standard. 

 

5.7 A hybrid approach 

 

When conditions are favorable, color-based approach can determine a more 

accurate bounding box. CNN approach, on the other hand, can determine bounding boxes 

that are just acceptable for an acceptable level of Intersection over Union. However, as 

explained on the section on comparison through positive examples, problems with the 

bounding boxes may adversely affect true positive, false positive, and false negative 

statistics. A hybrid approach can improve this situation. 

Color-based methods already need to use a hybrid approach for classification. 

Those methods have to make a trade-off between filtering negative regions and not 

missing positive regions, but after they determine the regions that are likely to contain the 

target objects, a second run with another method is still needed to confirm or classify the 

objects. 

CNN methods, in theory, do all this by themselves: find the object, determine its 

region, and classify. Some of the problems caused by bad localization can be partially 

fixed by adding a color-based localization improvement after the output of the CNN. This 

part can also be a more relaxed selector as at that stage, we would already have an object 
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and its bounding boxes and all we need is small improvements in the boundaries. At that 

stage, neither mistakenly detecting a false positive, nor the possibility of eliminating a 

true positive are problems. However, there is still the possibility of messing a correct 

bounding box due to parameters used in the color-based approach. 

The best place to add the color-based localization would be after the location filter 

and before the color-content filter. The location filter runs very fast and eliminates most 

of the unwanted output from the CNN. It would eliminate most of the unnecessary 

detections before applying the color-based localization corrections. On the other hand, 

color-content filter uses the whole bounding box to test its color content. Having a larger 

than necessary bounding box would include background parts of the box as noise and 

adversely affect the results of this filter. As a result, the workflow of the hybrid approach 

would be as shown in the following figure. 

 

 

Figure 41. Workflow for the hybrid approach 

 

The examples in the figure on the next page show some instances where the 

localizations of the CNNs (on the left) would normally increase both the false positive 

and false negative statistics by one, due to bad localization and an IoU below a 0.5 

threshold. A color-based bounding box correction step, as a hybrid approach, would 

improve the localization (on the right) and change those statistics into a true positive. 

If we go over the procedure for the first example, the detection on the left correctly 

identifies a sign but draws a bounding box that is too wide. Here, the IoU ratio goes below 

0.5 and therefore, this is not marked as a true positive. Even worse, since there is a 

detection that is not classified as a true positive, it is considered as a false positive. 

Furthermore, since the detection was not classified as a true positive, the sign is 

considered undetected and, as a result, a false negative. 

 

Image input
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Faster R-CNN

Filter 1
(location)
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improvement

Filter 2
(color-content)

(optional)

Output
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Figure 42. Localizations (left) can be improved (right) by a hybrid approach 

 

However, since color-based approach does not work perfectly in all conditions, 

this final improvement stage can also worsen the results in certain situations or with some 

bad parameter matchings as in the example in the figure below. 

 

  

Figure 43. A hybrid approach can also worsen the situation rarely 
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The results of running the hybrid approach over the positive sample set is 

presented in the following table. The two columns indicate the results with the IoU ratios 

of 0.5 and 0.3 respectively. 

 

Table 9. Results of the hybrid approach performance on positive sample set 

Method CNN CNN IoU3 CNN-h CNN-h IoU3 

TP 2451 2550 2510 2550 

FP 290 9 95 2 

FN 600 501 541 501 

Sensitivity 80% 84% 82% 84% 

Precision 89% 100% 96% 100% 

 

According to the test results, hybrid approach seems to improve the overall results. 

As can be seen in the figure below, filters are effective on decreasing the false positives, 

but a hybrid approach takes this improvement even further. Filtering removes unrelated 

matchings to decrease false positives; hybrid approach improves detection boundaries to 

correct true matchings (true positives) being registered as false positives due to 

localization errors. 

 

  

Figure 44. Effect of hybrid approach on false positives 

 

With false negatives, filters may work in the wrong direction. Filters can actually 

increase false negatives if they remove good matchings. Hybrid approach, however, 

works in the same with false negatives, by improving detection boundaries so that true 

matchings do not get registered as false negatives due to localization errors. 
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Figure 45. Effect of hybrid approach on false negatives 

 

These improvements show their effects on the sensitivity and precision statistics. 

 

  

Figure 46. Effect of hybrid approach on sensitivity 

 

  

Figure 47. Effect of hybrid approach on precision 

 

And finally, the improvements can naturally be observed in the precision-recall 

curves as well. 
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Figure 48. Effect of hybrid approach on precision-recall curves 

 

5.8 Adverse conditions 

 

The main idea of this work revolved around the viability of using a synthetic 

training set to detect and localize real objects in real-world scenes. The results were 

naturally tested on regular and common real-world scenes and situations. However, there 

can also be some adverse conditions, such as sun shining from ahead, cloudy and rainy 

weather, and nighttime scenes. Color-based methods mostly fail in adverse conditions as 

the color ranges are not robust to such changes even when the hue data is used. The CNN 

methods are also not very robust in such situations, but they can still produce some 

acceptable outputs. However, the post-detection filters were coded with regular 

conditions in mind and usually filter the acceptable outputs in adverse conditions. Some 

qualitative examples are presented below with post-detection filters disabled. 

Dark weather is one of the worst adverse conditions because video camera 

recordings from a moving vehicle get very blurry. When there is less blur and the signs 

are illuminated, there is higher chance of detection. 
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Figure 49. A fıne nighttime example 

 

However, as can be seen in the next page, when moving fast, night shots are 

usually blurry and not very usable. 

 

 

Figure 50. A blurry night frame example 
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Figure 51. A mildly dark example where the traffic has stopped 

 

 

 

 

 

Figure 52. A cloudy weather example 
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Figure 53. An example where the sun shines at the camera 

 

 

 

 

 

Figure 54. An acceptable example of a rainy scene 
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Figure 55. A rainy weather example not working well 

 

The study was done using synthesized training data on a regular day so failures 

with adverse conditions are expected. Further work can be done to see if simulating 

adverse conditions in the synthesized training data can improve the detection rates in such 

conditions. 
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CHAPTER 6  

 

POSSIBLE FUTURE EXTENSIONS 

 

6.1 Faster CNN architectures for real-time detection 

 

Current work is prototyped using the Faster R-CNN [10] architecture to show that 

training a good performing DL network is possible by starting with no real data at all. 

However, for the specific sample application of detecting motorway directional signs, an 

architecture that can perform in real-time would be more useful. Current popular 

examples of such systems are YOLO [47] and SSD [49] systems. Converting the current 

architecture to such systems would be more impressive for the current application field. 

 

6.2 Adding more sign classes 

 

Current work is prototyped to show that training a good performing DL network 

is possible by starting with no real data at all. This has been shown by using a very small 

subset of road signs, specifically two categories of informative motorway directional 

signs placed over the road, indicating where the lanes lead to. These signs were divided 

into two groups for continuing lanes and the exit lane at the right. For the specific needs 

of different applications, more subsets of specific signs can be included for the desired 

sign types. 

 

6.3 Incorporating more types of data augmentation transforms 

 

Current work is prototyped to show that training a good performing DL network 

is possible by starting with no real data at all. This has been done with a small set of data 

augmentation transforms: scaling, gaussian noise, darkening, rotation, and shear. These 

transforms were enough for the demonstration task at hand, detecting large signs over the 

road. However, there can be at least two more data augmentation methods for improving 

the possible performance for the road-side signs: obfuscation and lens distortion. In 
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addition, other transformations, such as reflections, night-time view, weather conditions, 

etc. can be considered to create a perfect system. 

 

6.3.1 Obfuscation 

 

The signs over the road usually have a clear direct sight of vision that can only be 

blocked by higher-than-usual vehicles such as trucks, and usually only when the signs are 

far. This blocking is usually close to full obfuscation and it is not worth including this 

type of obfuscation in data augmentation transformations. However, road-side signs in 

Turkey can usually be partially blocked by trees and bushes and still can be identified by 

human drivers. It would make sense to include obfuscation as part of the data 

augmentation transforms if the signs on the side of the road are to be added in the 

detection and classification list. 

 

6.3.2 Lens distortion 

 

Similarly, lens distortion takes its full effect on view pixels further from the center 

of the camera lens. For the common “landscape” view where image width is more than 

the height, the signs on the far left and far right side of the view would suffer from the 

non-linear camera lens distortion the most. Simulating such lens distortions can be 

considered to be added in the data augmentation transforms, if higher performance 

numbers are required. However, for practical purposes, this does not seem to be very 

useful for two reasons. First, it is more important to detect and process a road sign earlier 

in the process when it is still far away and, likely, not yet distorted as it is closer to the 

center of the camera lens. Second, when it is close enough to be distorted radically, it is 

already detected and processed anyway. In addition, at such viewpoints from a moving 

vehicle, the signs are visible for only a small amount of time in their distorted form due 

to the speed of the vehicle. In our example, since the objects move to the top of the 

viewpoint as they get close and since the topside of a “landscape” image is still close 

enough to the center of view for the camera lens, the distortion is not as much. The signs 

are already detected from a distance and as they move closer to the top of the view, they 

quickly move out of the field of view and disappear anyway. 
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6.3.3 Reflections of light 

 

Reflections from sunshine or vehicle headlights can rarely affect partially the 

vision of road signs. These can be simulated in a similar way to obfuscation 

transformations. 

 

6.3.4 Night-time conditions 

 

The training and testing were done for close-to-ideal lighting conditions. For 

detecting the signs in night-time conditions, both the background images and the data 

augmentation sets will have to be modified for night-time conditions, if this is a necessity 

for the required application. 

 

6.3.5 Adverse weather conditions 

 

Similarly, other augmentation transforms can be considered for data augmentation 

for adverse weather conditions. While it may be easier to simulate a “snowy weather” for 

the augmentation transforms, other conditions such as “heavy rain” may, of course, drop 

the performance of the detectors even if they could be trained with real data from such 

conditions. On the other hand, it is worth noting that it is much easier to simulate such 

conditions through data augmentation transformations than waiting for a day with heavy 

snow or rainfall. 

 

6.4 Fine-tuning with a limited set of real data 

 

Although this work concentrated on showing that CNN models can be trained 

with synthetic data, other work in the literature have also tried training a model with 

synthetic data and fine-tuning it with real data later. It might be interesting to test how 

adding a very limited set of real training data might affect the results of the model and 

whether it would be worth including real data. 
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CHAPTER 7  

 

CONCLUSIONS 

 

The frames were initially manually tested to observe any possible problems. 

While these manual tests are not turned into numerical results, they provided valuable 

insight both on how the model works and on locating possible problematic issues to be 

fixed before a full experiment would be run. 

 

7.1 The possibility of using entirely synthetic data 

 

As can be seen from the literature and observed from the results, a CNN can be 

trained using entirely synthetic data. In this work, “entirely” may not be fully correct as 

real motorway images are used as the background. But, considering that no real objects 

to be detected and classified were present in those images, we can say that the CNN was 

trained for classification using entirely synthetic examples of the classes to be detected. 

This method was especially practical for the application presented, detecting 

highway signs, because although the signs had a degree of variance, they also had a degree 

of structure; in addition, they were also easy to generate through code. More detailed 

objects, such as 3D household objects, or more detailed environments, such as traffic 

scenes where an OpenGL rendered 3D simulation was used for the entire traffic scenes, 

would require much in part of producing the synthetic images. 

 

7.2 The importance of synthetic data generation step 

 

Although it might seem fairly straightforward to produce the synthetic data, it 

does have intriguing details to be taken into consideration. 

First of all, the real-world image background data should not contain any positive 

instances of the objects to be detected; these objects would be synthetically generated and 

added. This is rather obvious. What may not be so obvious at first is that we should also 

include negative classification objects in the background as well. That is, if there are any 

objects that we do not want to be detected and classified as targets, we need to include 
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those in the background in the training set in order for our model to learn that they are 

irrelevant objects in the background. The objects that look similar to our target objects 

are especially important. 

The range of variations in your training data may affect the range of parameters 

your model can detect. An initial trial with a training set of limited “lightness” of colors 

would produce a model that may fail with scenes with very good lighting. Although this 

was a trivial problem that can easily be solved by preprocessing the image frames by 

automatically making them darker if needed, it would still be a good idea to plan ahead 

and keep a wider range of variations for the synthetic data generation. 

 

7.3 Thresholds, false positives, and misclassifications 

 

Thresholds, false negatives, and misclassification rates would naturally vary from 

domain to domain. In this selected application of detection of motorway signs, false 

positives are very rare with the CNN classifiers, thanks to post-filters. The regions a CNN 

classifier might trigger a false positive in a motorway scene can be easily filtered by 

location, size, aspect ratio, and color content. As a result, setting lower thresholds for 

detection is possible. However, this would also depend on the background images used. 

When there is an object that the network did not previously see in the training data (a 

billboard, a specially shaped tree, a special vehicle, a truck with writing on the side, etc.), 

the model can decide that it looks more similar to a sign than the limited backgrounds it 

has seen so far. 

Misclassifications, however, seem more likely since the two classes of signs look 

very similar. A single sign can be classified for both classes. Overlapping classifications 

can be compared to pick the right one. This is, of course, a post-processing action and a 

feature of the application domain rather than a feature of the model. But it will improve 

the performance of a model in this domain. 

 

7.4 Comparison with color-based hard-coded algorithms 

 

CNN methods are superior to color-based methods. For one thing, CNNs can 

provide detection, classification, and localization, all in one pass. Color-based methods 

can only present possible regions that may contain the object classes, but they cannot 
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provide a satisfactory classification. The examples in literature that use color-based 

detection methods, usually follow them up with other classification methods, of which 

CNNs are one of the recommended alternatives. 

Furthermore, color-based methods can produce too many false positives if the 

target colors are likely to exist in many other areas in image frames. Although these false 

positives can be filtered in the post-processing stage, the filtering is not perfect and it still 

takes a toll on computing time. Similarly, since many different colors are used within 

those signs in Turkey (blue, white, black, brown, orange), color-based filtering gets more 

complicated and might often produce multiple separate areas for a single sign with many 

colors and they will register as multiple false positives. However, both methods can also 

benefit from each other. CNNs can use color-based methods to filter possible ROIs in 

preprocessing or as a filter in postprocessing to weed out false positives. 

CNNs also have the extra advantage of training for variations of color parameters 

without having access to real data. Color-based methods depend on hard-coded rules; 

they can only handle variations either through tedious work of hard-code or through some 

parameter tuning with access to real-world data. 

 

7.5 Final verdict 

 

CNN methods have currently been widely accepted as the best way of detection, 

classification, and localization in problems with images. 

Their weak points in the past were the time it takes them to process, the extra time 

required for localization, the large amount of data they may require, and the costly process 

of manually annotating the data. Of these problems, localization and the processing time 

are solved with recent techniques such as Faster R-CNN, YOLO, and SSD. The required 

data and the cost of annotation can be solved with synthetic data. 

This work presents a specific real-world application where the CNNs can be used 

by synthetically producing both the training data and its annotations with a very 

reasonable amount of work. The results are very promising show that the CNN methods 

can generalize well from synthetic data to real-world tests. 
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