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Abstract

We describe a pipeline for structure-from-motion (SfM) with mixed camera types,

namely omnidirectional and perspective cameras. For the steps of this pipeline, we

propose new approaches or adapt the existing perspective camera methods to make the

pipeline effective and automatic. We model our cameras of different types with the

sphere camera model. To match feature points, we describe a preprocessing algorithm

which significantly increases scale invariant feature transform (SIFT) matching perfor-

mance for hybrid image pairs. With this approach, automatic point matching between

omnidirectional and perspective images is achieved. We robustly estimate the hybrid

fundamental matrix with the obtained point correspondences. We introduce the nor-

malization matrices for lifted coordinates so that normalization and denormalization

can be performed linearly for omnidirectional images. We evaluate the alternatives of

estimating camera poses in hybrid pairs. A weighting strategy is proposed for itera-

tive linear triangulation which improves the structure estimation accuracy. Following

the addition of multiple perspective and omnidirectional images to the structure, we

perform sparse bundle adjustment on the estimated structure by adapting it to use the

sphere camera model. Demonstrations of the end-to-end multi-view SfM pipeline with

the real images of mixed camera types are presented.
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1. Introduction1

Omnidirectional cameras provide a 360◦ horizontal field of view in a single im-2

age, which is an important advantage in many application areas such as surveillance3

[1, 2], robot navigation [3, 4] and 3D reconstruction [5, 6]. Point correspondences4

from a variety of angles provide more stable structure estimation [7] and degenerate5

cases like viewing only a planar surface are less likely to occur. Omnidirectional im-6

ages can provide omni-present correspondences when the fields of view of perspective7

images do not overlap as we will discuss in this paper. A major drawback of these8

cameras is their lower spatial resolution than perspective cameras due to their large9

field of view. Using perspective cameras together with the omnidirectional ones could10

improve the resolution while preserving the advantage of an enlarged field of view.11

A possible scenario is 3D reconstruction in which omnidirectional cameras provide12

low resolution background reconstruction whereas the images of perspective cameras13

are used for modeling specific objects in the foreground. Another possible application14

opportunity for hybrid SfM is hybrid surveillance systems, for instance using a pan-15

tilt-zoom camera with an omnidirectional camera [1]. Enhancement of these systems16

by 3D structure and location estimation algorithms is possible without increasing the17

number of cameras.18

For 3D reconstruction with such hybrid camera systems, we need to adapt the steps19

that are employed in systems using a single type of camera. In Fig. 1, an SfM pipeline20

which is commonly used for perspective camera systems is given. We investigate the21

applicability of this pipeline to hybrid camera systems and we propose improved or22

modified methods for different steps of this pipeline when needed.23

Regarding the previous studies on hybrid systems, Adorni et al.[3] used a hybrid24

system for the obstacle detection problem in robot navigation. Chen and Yang [8]25

developed a region matching algorithm for hybrid views based on planar homogra-26

phies. The epipolar geometry between hybrid camera views was first explained by27

Sturm [9] for mixtures of paracatadioptric (catadioptric camera with a parabolic mir-28
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Figure 1: Steps of the applied SfM pipeline.

ror) and perspective cameras. The framework was extended to catadioptric cameras29

with hyperbolic mirrors and cameras with lens distortion by Barreto and Daniilidis30

[10]. Puig et al.[11] worked on feature point matching and fundamental matrix esti-31

mation between perspective and catadioptric camera images. For point matching, they32

first applied a catadioptric-to-panoramic conversion and employed regular SIFT [12]33

between panoramic and perspective views. They employed RANSAC [13] based on34

satisfying the epipolar constraint and compared the representation capabilities of 3x4,35

3x6 and 6x6 hybrid fundamental matrices for mirrors with varying parameters.36

To our knowledge, the only work on hybrid SfM was conducted by Ramalingam37

et al.[14]. They employed a highly generic non-parametric imaging model where the38

cameras are modeled with sets of projection rays. They mentioned that directly ap-39

plying SIFT [12] did not provide good results for their fisheye-perspective image pairs40

and used manually selected feature point correspondences to estimate the epipolar ge-41

ometry. They employed the midpoint method for triangulation to estimate 3D point42

coordinates. They also tested two different bundle adjustment approaches, one mini-43

mizing the distances between projection rays and 3D points and the other minimizing44

reprojection error, concluding that both approaches are comparable to each other.45
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In our work, we employ the sphere camera model [15] which covers central (single-46

viewpoint) catadioptric systems as well as perspective cameras. The details are pre-47

sented in Section 2. The SfM pipeline described here applies to all the cameras that48

can be modeled with the sphere model. The proposed methods for point matching49

and triangulation can be used with the cameras beyond the scope of the sphere camera50

model, since they do not employ this camera model.51

Widely accepted feature matching methods (eg. SIFT [12], MSER [16]) do not per-52

form well when they are directly employed for hybrid camera images [11, 14]. Main53

reasons are the resolution difference and the distortion of features between the im-54

ages of different camera types. Our analysis showed that, most of the false matches in55

SIFT output are due to matching a high-resolution feature in the perspective image to56

a feature in the omnidirectional image which does not have such high-resolution. We57

propose an algorithm that preprocesses the perspective images before matching. In this58

way, the probability of matching the features between the incorrect scales (octaves) de-59

creases and SIFT matching produces a significantly higher true-positive ratio allowing60

us to perform automatic omnidirectional-perspective matching. We performed tests on61

a total of 20 image pairs taken from different scenes and with different omnidirectional62

(both catadioptric and fisheye) cameras. To decrease the effect of distortion in hybrid63

image pairs, we evaluate the use of virtual camera plane (VCP) images and include64

VCP-perspective matching to our experiments. Experimental results, given in Section65

3, indicate the success of our method.66

We employ RANSAC [13] to robustly compute the hybrid fundamental matrix (F)67

which requires the usage of lifted coordinates for linear estimation [9, 10]. We intro-68

duce normalization matrices for lifted coordinates so that normalization and denormal-69

ization can be performed linearly. We compare two options for motion estimation, one70

is directly estimating the essential matrix (E) with the calibrated 3D rays, the other71

option is estimating the hybrid F and then extracting E from F. We give details of our72

analysis in Section 4.73

The only previous study including hybrid camera triangulation is using the mid-74

point method [14], however it was shown that iterative linear methods are superior to75

the midpoint method [17]. We propose a weighting strategy for the iterative linear-76
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Eigen triangulation method to improve its 3D location estimation accuracy by trusting77

the (high resolution) perspective image more when employed for hybrid image pairs78

(Section 5).79

In Section 6, we describe how we perform multi-view SfM. Briefly, we employ80

the approach of adding views to the structure [18] and to refine the final 3D point81

coordinates and camera motion parameters, we adapt the sparse bundle adjustment82

method [19] by modifying its projection function to be used with the sphere camera83

model.84

We present the results of our experiments for the individual steps of the SfM85

pipeline within the related sections. In Section 7, we present the demonstrations of86

the complete pipeline, i.e. multi-view hybrid SfM with real images, to show that our87

approach is working effectively in real world scenarios. We present two scenarios, also88

mentioned at the beginning of this section, where employing a hybrid camera system89

is advantageous. One of them is a surveillance setup where the scene can be dynamic90

and images are captured simultaneously. Thus, a mobile camera can not be used and91

it is not practical to use many perspective cameras to cover the whole scene. Section92

7.1 presents such a scenario in which an omnidirectional camera is used in conjunction93

with a limited number of perspective cameras that do not view the same part of the94

scene. Such hybrid systems are becoming more widespread with the increased demand95

for video surveillance. We demonstrate how an omnidirectional camera can combine96

the 3D structures viewed by two or more perspective cameras with no overlapping97

views. Section 7.2 presents a second scenario in which two omnidirectional images98

are used to provide low resolution background reconstruction whereas several perspec-99

tive views are used for modeling the objects at the foreground. The hybrid method100

alleviates the need for a mobile camera or a network of cameras for background re-101

construction. In Section 7.3, we draw the reader’s attention to another advantage of the102

hybrid systems and we demonstrate that adding omnidirectional cameras to perspective103

SfM scenarios increases the accuracy of motion estimation. Finally, in Section 7.4, we104

present an outdoor experiment, in which an image sequence from a captured video was105

used, to investigate the applicability of our hybrid SfM in other realistic scenarios.106

The work presented here mainly comprises the research included in the first au-107
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Figure 2: Projection of a 3D point to two image points in the sphere camera model.

thor’s dissertation [20] and some of the experimental results are presented in [21].108

2. Camera Model and Calibration109

We use the sphere camera model by Geyer and Daniilidis [15] which was intro-110

duced to model central catadioptric cameras. Later, this model was extended to cover111

perspective cameras with lens distortions [22]. The model, comprises a unit sphere112

and a perspective camera and the projection of 3D points can be performed in two113

steps (Fig. 2). The first one is the projection of point Q in 3D space onto a unitary114

sphere and the second one is the projection from the sphere to the image plane. The115

first projection gives rise to two intersection points on the sphere, r±. The one that is116

visible to us is r+ and its projection on the image plane is q+. This second projection117

is realized by q+ ∼ Kr+ where K is a projection matrix including the intrinsic and118

extrinsic parameters of the perspective camera embedded in the sphere model. The119

sphere model covers all central catadioptric cameras described by the distance between120

the camera center and the center of the sphere, ξ. ξ = 0 for perspective, ξ = 1 for121

para-catadioptric, 0 < ξ < 1 for hyper-catadioptric cameras. This projection geometry122

is described in detail in [23].123

Several methods were proposed for the calibration of catadioptric systems. Some of124

them consider estimating the parameters of the mirror together with the camera param-125

eters [24, 25, 26, 27], some others calibrate outgoing rays based on a radial distortion126

model [28, 29, 30]. Since we use the sphere camera model for our projections, we127

calibrate our cameras with this model. Mei and Rives [31] developed a MATLAB cal-128
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ibration toolbox for the sphere model. It requires user input for initialization of focal129

length and principal point. The user also needs to define the type of the mirror and the130

toolbox is not able to calibrate perspective cameras.131

A recent contribution on the sphere model calibration is given in [32], authors of132

which contributed to this paper as well. In this technique, initial intrinsic parameters133

are estimated linearly making use of lifted coordinates and estimating a 6x10 projection134

matrix. Then the parameters are optimized to reach the minimum reprojection error.135

This algorithm requires a 3D calibration pattern and brings the advantage of linear and136

automatic parameter initialization.137

3. Feature Matching138

To match the features in hybrid image pairs automatically, we describe a prepro-139

cessing algorithm to be applied with SIFT [12] matching. Matching performance de-140

creases with distortion of features due to increasing baseline length or changing cam-141

era geometry. SIFT detects features at different scales and matches them regardless142

of their scales. We also observed low matching accuracy when there is a major scale143

difference between the two images. These conditions especially apply to our hybrid144

image pairs where there is an inherent resolution difference and distortion between the145

images of different camera types. Most of the false matches in the SIFT output are due146

to matching a high-resolution feature in the perspective image to a feature in the omni-147

directional image. Let us explain this phenomenon by an example. Table 1 shows the148

number of extracted features in the so-called octaves of an hybrid image pair. There is149

an approximate ratio between the scales of true correspondences (SR=σpers/σomni),150

which is indicated in the table with arrows. SIFT extracts many features (nearly 3000)151

at the first two (high-resolution) octaves. Due to the distortion in the images, some of152

the excessive number of candidates from the first two octaves of the perspective image153

are incorrectly selected as the best match of the features in the omnidirectional image154

since they accidentally have close enough feature orientation vectors. If there were no155

candidates from incorrect scales, these false matches would have been prevented. For156

the given image pair, there are 25 false matches out of 60 and 23 of these false matches157
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Table 1: Number of SIFT features detected in different octaves of a perspective-omnidirectional image pair.

Corresponding octaves of correct matches are indicated with arrows. Last column shows the number of

features when the perspective image is downsampled by 3.6 (both in horizontal and vertical axis) following

a low-pass filtering operation.

have an SR≤2.0, whereas the average SR of true matches is 3.57.158

The histogram of the example hybrid image pair in Table 1 is shown in Fig. 3a. The159

accumulation on the left (matches with SR<2.0) is explained by the false matches due160

to matching features in the first two octaves of the perspective image. False matches161

can be eliminated by defining a window around the peak and rejecting the matches162

outside. A similar elimination was performed in [33, 34] where only perspective image163

pairs were considered. Yi et al.[33] worked on perspective images with approximately164

the same scale and eliminated the matches with scale differences outside the selected165

window. In the method proposed by Alhwarin et al.[34], the octave pair which yields166

the maximum number of matches is detected and the matches from other octave pairs167

are rejected.168

However, instead of performing such an elimination after matching, we suggest169

improving the SIFT matching output by processing the high resolution image so that its170

resolution matches that of the lower resolution image. Doing so not only eliminates the171

false matches but also increases the number of correct matches. This can be achieved172

by low-pass filtering and downsampling the perspective image in a hybrid pair. With173

this preprocessing, the scale ratio of matching features becomes close to 1 and the174

possibility of matching valuable features in the omnidirectional image with the features175

in the correct octaves of the perspective image considerably increases since the high-176

resolution candidate features in the perspective image are already eliminated.177

8



(a) (b)

Figure 3: Histogram of SR for the matches in the perspective-omnidirectional image pair given in Table 1.

(a) SIFT applied on original image pair, (b) SIFT applied on the preprocessed perspective image and the

original catadioptric image.

We selected the downsampling factor from the histogram as the mean of the most178

dominant Gaussian in the mixture (Fig. 3a), because the SIFT scale space ratio also179

reveals the scale ratio of features in the images. To avoid aliasing, we low-pass fil-180

ter the perspective image before downsampling. We selected the cut-off frequency as181

2.5/σ in the frequency domain and the standard deviation of the Gaussian low-pass182

filter becomes σ = 2.5d/π where d is the downsampling factor. Fig. 3b shows the183

SR histogram when the perspective image is low-pass filtered and downsampled as184

explained. This matching resulted in a true/total ratio of 56/60.185

We can further restrict the scale to remove a few false matches with improper SR.186

To do this we define a window around the mean scale ratio SR and discard the matches187

outside the window. For our algorithm we chose the bounds of the restriction window188

as [0.6SR,1.4SR] (Fig. 3b). After this final elimination, true/total ratio becomes 54/55189

for the given example. Visual matching results for the example image pair before and190

after the proposed method are given in Fig. 4.191

Let us summarize the steps of the proposed matching method:192

193

1. Following an initial matching, extract the downsampling factor (d) from the his-194

togram of scale ratios (eg. Fig. 3a).195

2. Low-pass filter the perspective image with a Gaussian filter having a σ = 2.5d/π196

and downsample it by d.197
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3. Apply SIFT matching between the preprocessed perspective image and the orig-198

inal omnidirectional image.199

4. Perform final elimination on the histogram of scale ratios (SR) of the final match-200

ing (eg. Fig. 3b).201

If we directly apply scale restriction (Step 4) without preprocessing, similar to the202

approaches in [33, 34], the resultant true/total ratio is 32/34. We will refer to this203

approach as Scale Restricted SIFT. Although most of the false matches are eliminated204

with this scale restriction, our method keeps a higher number of correct matches with a205

true/total of 54/55. In our method, many high-resolution candidate features are already206

eliminated before the final matching and they no longer act as attraction centers. A207

performance comparison between our method and Scale Restricted SIFT is presented208

with experimental results in Section 3.2. It is important to keep as many true matches209

as possible in most computer vision applications, especially for structure-from-motion.210

An earlier version of our method concentrated on the feature matching for perspec-211

tive image pairs [35]. We showed that the proposed SR detection and preprocessing212

approach works on perspective image pairs with wide-baseline distortion.213

In this paper, we describe the reasons of false matches in SIFT on hybrid pairs. We214

employ virtual camera plane (VCP) images to decrease the effect of distortion between215

hybrid images. The elimination window in the final elimination (Step 4) can be made216

adaptive. Due to the decreasing resolution towards the center of a catadioptric image,217

the scale of the objects close to the center is smaller than the scale of those at the218

periphery of the image. In order to accommodate varying scale within the image, the219

upper and lower boundaries of the elimination window are decreased (expected SR is220

lower) for a point that is closer to the periphery. If a point is closer to the center, the221

boundaries are increased. This adjustment resulted in a marginal improvement and is222

suggested when the feature points are scattered from the center to the periphery of the223

catadioptric image. The integration of the point matching step to the SfM pipeline is224

presented in Section 4.2 where the remaining false matches that do not conform to the225

hybrid epipolar constraint are eliminated.226
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Figure 4: SIFT matching result for the sample hybrid image pair before (top) and after (bottom) the proposed

approach. Final true/total ratio is 54/55, whereas it was 35/60 as the output of regular SIFT. Red dashed lines

show the false matches, green solid lines show the correct ones.

3.1. Creating VCP Images227

In addition to the omnidirectional-perspective matching, we investigate matching228

virtual camera plane (VCP) images with perspective images (Fig. 5). The motivation229

here is to decrease the effect of the distortion of the features between the different230

camera types. A VCP image is produced by unwarping a certain region of the omnidi-231

rectional image to generate a perspective image (an example exists in [36]). Many such232

VCP images can be generated. To perform matching with a certain perspective image,233

we generate one VCP image with a certain viewing direction (azimuth), a vertical angle234

and a distance from the viewpoint (zoom) so that the VCP field of view is as close as235

possible to that of the perspective image.236

Since we created VCP images to match the size of the perspective images, the SR237

of the true matches is already close to 1 and no downsampling is needed. However,238
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Figure 5: Representation of VCP matching procedure.

we still need to low-pass filter the perspective image to prevent SIFT from extracting239

high-resolution spurious attractors.240

3.2. Experiments241

To test the robustness of the proposed algorithm, we performed experiments on a242

total of 20 image pairs taken in different scenes with three different omnidirectional243

cameras. We used the SIFT implementation of Andrea Vedaldi 2 with a modification244

to yield one-to-one matching.245

Fig. 6 shows the images used in one of the experiments. Omnidirectional images246

are captured with Remote Reality S80 Optic 3. Matching results are given in Table247

2, where we can compare the three approaches: direct omnidirectional-perspective248

matching, matching after downsampling the perspective image and VCP-perspective249

matching. We plot the ratio of true/total matches in Fig. 7 to provide easiness in com-250

parison. To keep the number of matched points same for different trials of an image251

pair, we adjusted the matching threshold of SIFT, which defines the strength of the252

matched point with respect to the second candidate match.253

We observe that the matching performance decreases with increasing baseline (from254

Pers1 to Pers3) for all approaches. This is the natural performance decrease due to the255

wide baseline and occurs regardless of being a hybrid pair or not. It can be seen that256

the proposed method (both with and without the VCP approach) outperforms SIFT257

matching applied on original images. We also observe that the VCP approach exhibits258

slightly better results since it attempts to solve both the distortion and the resolution259

2http://vision.ucla.edu/∼vedaldi/code/sift/sift.html
3http://www.remotereality.com
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Figure 6: Images used for the experiment results of which is given in Table 2. Top row is Omni1 and VCP

image generated from it (VCP1), second row is Omni2 and VCP2, bottom row is the perspective images,

Pers1, Pers2 and Pers3. Omnidirectional images have a size of 1024x960 pixels, whereas perspective and

VCP images are 1100x800 pixels. Please note that the hybrid image pair used in Table 1, Fig. 3 and Fig. 4

is Omni2-Pers2.

difference problems.260

The last column of Table 2 shows the true/false ratios obtained after final elimi-261

nation. The values in this column support the observation that the proposed method262

(with or without VCP) provides a higher number of correct matches, when compared263

to Scale restricted SIFT (SRS). The values in PersN-OmniM rows refer to the SRS264

result whereas the values in PersN σA dB - OmniM rows are the results of our method.265

Regarding the Pers2-Omni2 pair for instance, our method results in 54/1 true/false266

matches, which overwhelms the number of true matches in the result of SRS (32/2). At267

the end of this section, we compare SRS with the proposed method for all the image268

pairs (Table 3).269

Fig. 8 shows the experimental results in graphs for another catadioptric-perspective270
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Image pairs no. of true/false true/false

matches (true/total %) final

Pers1 - Omni1 100 97/3 (97%) 84/1

Pers1 σ1.5 d1.65 - Omni1 100 99/1 (99%) 94/0

Pers1 σ1.5 - VCP1 100 99/1 (99%) 99/0

Pers2 - Omni1 75 56/19 (75%) 51/7

Pers2 σ1.5 d1.65 - Omni1 75 70/5 (93%) 69/1

Pers2 σ1.5 - VCP1 75 73/2 (97%) 73/1

Pers3 - Omni1 60 42/18 (70%) 39/9

Pers3 σ1.5 d1.65 - Omni1 60 50/10 (83%) 50/6

Pers3 σ1.5 - VCP1 60 57/3 (95%) 57/1

Pers1 - Omni2 80 63/17 (79%) 62/1

Pers1 σ2.5 d3.6 - Omni2 80 80/0 (100%) 80/0

Pers1 σ2.5 - VCP2 80 80/0 (100%) 80/0

Pers2 - Omni2 60 35/25 (58%) 32/2

Pers2 σ2.5 d3.6 - Omni2 60 56/4 (93%) 54/1

Pers2 σ2.5 - VCP2 60 56/4 (93%) 56/3

Pers3 - Omni2 45 15/30 (33%) 15/1

Pers3 σ2.5 d3.3 - Omni2 45 35/10 (78%) 32/6

Pers3 σ2.5 - VCP2 45 37/8 (82%) 35/3

Table 2: Matching results for the image pairs given in Fig.6. PersN σA dB indicates that PersN image was

low-pass filtered with σ = A Gaussian filter and downsampled by a factor of B in each direction. N in

VCPN indicates the index of omnidirectional image that the VCP is generated from.

camera pair, where the catadioptric images are taken with 0-360 Panoramic Optic 4. We271

again have two omnidirectional and three perspective images. When compared to the272

direct SIFT matching, the true/total match ratio increases for both downsampling and273

VCP approaches. However, this time the VCP approach is distinctively better. We274

relate this result to the existence of repetitive patterns in the scene such as windows275

and repeating structures on the facade. Distorted features in the omnidirectional image276

are more vulnerable to being distracted by similar-looking features. The VCP approach277

produces more distinctive candidates for the features in the perspective image, resulting278

4http://www.0-360.com
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Figure 7: The true/total match ratios (in percentage) for images in Fig. 6. These graphs are also the plotted

versions of the information given in Table 2. Omni1-PersN (on the left) and Omni2-PersN (on the right).

Figure 8: The true/total match ratios (in percentage) for the second omnidirectional-perspective matching

experiment. Examine with Fig. 9.

in higher matching accuracy. Fig. 9 shows the correct and false matches of Pers1-279

Omni1 pair for the three compared matching approaches.280

To investigate if the proposed approach is also valid for cameras with fisheye lenses,281

we conducted experiments with a Fujinon FE185C046HA 185◦ fisheye lens. Matching282

results are shown in Fig. 10 where the improvement with the proposed approaches can283

be easily observed. When compared to the results of experiments with catadioptric284

cameras, we are able to say that the performance of the VCP approach did not change285

but the performance of the downsampling approach increased. Fig. 11 shows the286

results of direct SIFT matching and downsampling approaches for Pers2-Fish1 pair.287

We combine the results of 12 catadioptric-perspective and 8 fisheye-perspective288

image pairs in Table 3 which shows the average FP rate (# false positives / # detected289

matches) and TP (# true-positives) for the compared methods. In addition to the three290
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Figure 9: Matching results for the Pers1-Omni1 pair of the experiment in Fig. 8 for the three compared

matching approaches: direct omnidirectional-perspective matching (top), matching after downsampling per-

spective image (middle) and VCP-perspective matching (bottom). Red dashed lines indicate false matches,

whereas green lines indicate correct ones. From top to bottom, there are 32, 16 and 3 false matches out of 60

matches, respectively.

mentioned methods, we include Scale restricted SIFT in which the elimination of false291

matches is applied after direct SIFT matching (eg. the last column of Table 2) and can292

be associated with the approaches given in [33, 34]. The scale ratio between the images293

varies between 1.5-4.2 and the number of detected matches varies between 50 and 100.294

The FP rate is very low for both Scale restricted SIFT and our method compared to295

direct SIFT matching. When the number of TP is considered, our method outperforms296

SIFT and Scale restricted SIFT. For catadioptric-perspective pairs, our method with297

VCP produces better results. For hybrid pairs including fisheye images, on the other298

hand, our method without VCP performs as well as our method with VCP conversion.299
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Figure 10: The true/total match ratios (in percentage) for the fisheye-perspective matching experiment. Ex-

amine with Fig. 11.

Catadioptric Fisheye

FP rate TP FP rate TP

SIFT 0.39 42.1 0.30 56.2

Scale restricted SIFT 0.11 38.7 0.06 54.6

Our method 0.12 52.8 0.02 74.0

Our method + VCP 0.03 61.9 0.02 74.9

Table 3: Matching results including all hybrid pairs. Represented separately for pairs including catadioptric

cameras and fisheye cameras.

We infer from the table that the proposed approach increases the number of cor-300

rect matches rather than just eliminating the false matches afterwards. The number of301

correct matches is important for healthy fundamental matrix (F) estimation. The elim-302

ination of a few remaining false matches that do not conform to the epipolar geometry303

is also performed during the estimation of F with RANSAC. The reader will observe304

that RANSAC on the Scale restricted SIFT match set does not completely eliminate305

false matches and retains fewer correct matches (Section 4.2).306

The proposed algorithm of preprocessing the perspective images method works307

with different hybrid camera types as shown by experiments. Thus, we can say that the308

proposed technique of extracting parameters of low-pass filtering and downsampling is309

versatile for omnidirectional cameras to a large extent. The reader can reach an analysis310

on the sensitivity of preprocessing parameters in [20].311
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Figure 11: Matching results for the Pers2-Fish1 pair of the experiment in Fig. 10 for the direct SIFT match-

ing (top) and matching after downsampling (bottom) approaches. Red dashed lines indicate false matches,

whereas green lines indicate correct ones. Out of 75 matches, there are 21 false matches in the direct SIFT

matching output, whereas there is only one false match with the proposed approach.

4. Epipolar Geometry and Motion Estimation312

Epipolar geometry between hybrid camera views was explained by Sturm [9] for313

mixtures of paracatadioptric and perspective cameras. Barreto showed that the frame-314

work can also be extended to cameras with lens distortion due to the similarities be-315

tween the paracatadioptric and division models [10]. To summarize this relationship,316

let us denote the corresponding image points in perspective and catadioptric images317

with qp and qc respectively. They are represented as 3-vectors in homogeneous 2D318

coordinates. To linearize the equations between catadioptric and perspective images,319

lifted coordinates are used for the points in omnidirectional images. Lifting for para-320

catadioptric cameras can be performed by q̂c = (x2 + y2, x, y, 1)
T. A 3x4 hybrid321

fundamental matrix expresses the epipolar constraint between these points:322

qT
pFpcq̂c = 0 (1)
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Figure 12: Hybrid epipolar geometry between a perspective and a catadioptric image. qp and qc are the

projections of a 3D point Q on perspective and catadioptric images respectively. ep and ec are the epipoles

in the perspective and catadioptric images respectively.

Using Fpc, geometric entity relations are:323

lp = Fpcq̂c , cc = FT
pcqp , q̂T

c cc = 0 , qT
p lp = 0 (2)

where lp is the epipolar line in the perspective image and cc is the corresponding324

epipolar curve (here, a circle) in the catadioptric image. Lifting coordinates enables325

us to represent a point on a curve with a simple dot product (q̂T
c cc = 0) as we do for326

line-point incidence. Actually cc is a 4-vector containing the four different elements of327

a curve (epipolar conic in our case) represented in matrix form:328

C =


2c1 0 c2

0 2c1 c3

c2 c3 c4

 (3)

Hybrid epipolar geometry can be visualized in Fig. 12. An example of correspond-329

ing epipolar lines/conics are given in Fig. 13.330

The relation between two paracatadioptric views can be represented by a 4x4 funda-331

mental matrix. Lifted coordinates for hyperbolic mirrors are represented by 6-vectors332

since the corresponding conic does not have to be a circle. Hypercatadioptric images333
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Figure 13: Example catadioptric-perspective pair and epipolar conics/lines of point correspondences.

fail to satisfy the same linear form of the epipolar constraint [10], however it has been334

shown that a linear relation exists with a 15x15 fundamental matrix for hypercatadiop-335

tric cameras [23].336

4.1. Normalization337

Normalization of image point coordinates comprises carrying the origin to the cen-338

troid of the points and scaling the coordinate values. It is crucial for fundamental matrix339

estimation as indicated in [37] for the 8-point algorithm of perspective cameras.340

A way to perform normalization for lifted coordinates is normalizing point coordi-341

nates before lifting them. In this case, after Fpc is computed with lifted coordinates,342

we need to denormalize corresponding points, lines and conics for outlier elimination.343

However, we chose to define 4x4 T matrices for normalization of lifted coordinates344

(q̂1norm = T1q̂1 and q̂2norm = T2q̂2), so that normalized coordinates still suit to the345

lifted form, i.e. (x2 + y2, x, y, 1).346

Let n be the value of scale normalization and (cx, cy) be the centroid of the points347

in the image, lifting a normalized point leads to the 4-vector:348

q̂norm =
(

(x−cx)2

n2 +
(y−cy)2

n2 , x−cx
n ,

y−cy
n , 1

)
(4)

The transformation T defined in Eq. 5 yields q̂norm when multiplied with unnor-349

malized lifted coordinates (q̂).350
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q̂norm = Tq̂ =



1
n2

−2cx
n2

−2cy
n2

c2x+c2y
n2

0 1
n 0 −cx

n

0 0 1
n

−cy
n

0 0 0 1




x2 + y2

x

y

1

 (5)

With these T matrices, denormalization of F can be performed linearly by F =351

TT
2FnormT1, which produces correct epipolar conics/lines (Eq. 2).352

For scale normalization in perspective images, it is suggested to normalize the point353

coordinates so that the RMS distance of the points from the origin is equal to
√

2. It354

indicates the case that (x,y) coordinates are normalized to (1,1) which minimizes the355

difference between bare, multiplied and powered coordinate values [38]. This is the356

optimal condition for the linear estimation of F because these values are multiplied357

with the entries of F. We investigated the similar optimal case for hybrid pairs where358

we have a variety of terms such as (x2 + y2)x, xy, x and 1. Observing that no certain359

scale normalization value (n) equalizes all these terms as in the perspective camera360

case, we conducted experiments to find the empirically best value for hybrid pairs of361

real and simulated images [20]. We observed that (nomni, npers) = (
√

2,
√

2) is the362

best performer for most of the cases.363

4.2. Outlier Elimination364

After the initial detection of the point matches, the RANSAC [13] algorithm based365

on the hybrid epipolar constraint is used to eliminate the false matches. Since Fpc has366

12 elements, for RANSAC in hybrid images the minimum number of correspondences367

needed to estimate Fpc is 12-1(scale factor)=11. As in the perspective camera case,368

we define a distance threshold (d) to distinguish the outliers from inliers, where the369

points closer to their corresponding epipolar lines/curves than d are called inliers. In370

our experiments, we use d = dl + dc, where dl is the point-to-line distance in the371

perspective image and dc is the point-to-conic distance in the catadioptric image. In372
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point matching true/false after

Image pairs total true/false final RANSAC

Pers2 - Omni1 75 51/7 49.3/2.1

Pers2 σ1.5 d1.65 - Omni1 75 69/1 67.8/0.1

Pers2 σ1.5 - VCP1 75 73/1 70.7/0.0

Pers3 - Omni1 60 39/9 36.9/3.6

Pers3 σ1.5 d1.65 - Omni1 60 50/6 47.9/2.5

Pers3 σ1.5 - VCP1 60 57/1 54.5/0.0

Pers2 - Omni2 60 32/2 29.1/0.0

Pers2 σ2.5 d3.6 - Omni2 60 54/1 53.8/0.5

Pers2 σ2.5 - VCP2 60 56/3 54.6/0.0

Pers3 - Omni2 45 15/1 12.9/0.4

Pers3 σ2.5 d3.3 - Omni2 45 32/6 31.8/2.3

Pers3 σ2.5 - VCP2 45 35/3 33.4/1.0

Table 4: Matching results after RANSAC for the wide-baseline image pairs in Table 2. We repeated

RANSAC 30 times for each pair and recorded the mean values yielding non-integer values. Distance thresh-

old of RANSAC, d, was set to 15 pixels. PersN σA dB indicates that PersN image was blurred with σ = A

Gaussian filter and downsampled by a factor of B in each direction.

the VCP approach, we first calculate the coordinates of point correspondences in the373

omnidirectional image and then use them in RANSAC.374

During F estimation, the rank 2 constraint is imposed by non-linear refinement of375

an orthonormal representation of F as proposed in [39] which was proved to provide376

better results than the direct imposition of rank 2.377

Experiments. For the wide baseline image pairs of Fig. 6 and Table 2, the number of378

matches and successful match ratios before and after RANSAC elimination are given379

in Table 4. We infer from the table that the remaining false matches can be eliminated380

by RANSAC to a great extent. If there are still a few false matches it means these false381

matched points are very close to the corresponding epipolar line/conic by coincidence.382

The proposed point matching method (especially the VCP approach) provides a higher383

number of correct matches as input to RANSAC when compared to Scale restricted384

SIFT (rows with PersN -OmniM ). Since the final F is estimated by using all the inlier385

matches, more correct matches directly results in a more accurate estimate.386
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4.3. Motion Estimation387

Motion estimation is the step of extracting the motion parameters of the cameras388

with respect to each other. The rotation and translation between the camera views are389

extracted from the essential matrix (E) with the technique given in [37]. We analyzed390

two methods for the estimation of E. The first option is directly estimating E with the391

calibrated 3D rays of the correspondences in the RANSAC output. The other option392

is estimating Fpc with RANSAC and then extracting E from Fpc using the relation [10]:393

394

qT
pK
−T
p︸ ︷︷ ︸

q̄T
p

EΘTK̂T
c q̂c︸ ︷︷ ︸

q̄c

= 0
(6)

395

where q̄p and q̄c are the normalized 3D rays for perspective and catadioptric cameras396

respectively. Kp is the calibration matrix of the perspective camera, K̂c is the lifted397

calibration matrix of the catadioptric camera. Finally398

399

ΘT =


0 2 0 0

0 0 2 0

−1 0 0 1


400

which carries the origin of coordinate system to the center of the sphere (cf. Fig. 2)401

linearly with lifted coordinates for paracatadioptric cameras.402

Experiments. We conducted an experiment on simulated data to compare these two403

options. Fig. 14 shows the 3D location estimation errors and 2D (reprojection) errors404

for direct-E and E-from-F methods for varying number of point correspondences and405

varying amount of Gaussian location noise added to both images. We infer from the406

graphs that the direct-E method resulted in less 2D and 3D error. E-from-F is more407

vulnerable to noise. This is not surprising since lifted coordinates are used to compute408

Fpc which increases the impact of noise and Fpc has 12 elements whereas E has 9.409

We should also keep in mind that the direct-E approach can be used for all types410

of cameras as long as calibration is performed, whereas the E-from-F approach is not411

practically possible for all omnidirectional cameras as the problems with hypercata-412

dioptric systems are explained in [10].413
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(a) (b)

Figure 14: Comparison of the two E-estimation methods: direct-E and E-from-F. After E was estimated

with either of these methods using point correspondences, 3D locations of the points were estimated with

linear-Eigen triangulation and reprojected to the images. Plotted values are the 3D estimation errors (in cm.)

and the median 2D reprojection errors (in pixels) for the images of hybrid pair. The number of the point

correspondences used to compute E and F is given in x axis. Each case was repeated 50 times and mean

values are plotted. Solid lines show the errors of direct-E method, dashed lines show errors of E-from-F

method. (a) σ of the Gaussian noise is 1.0 pixel. (b) σ of the Gaussian noise is 2.0 pixels.

5. Triangulation414

We propose an improvement for the iterative linear-Eigen triangulation method for415

effective use in hybrid SfM. According to the comprehensive study by Hartley and416

Sturm [17], iterative linear-Eigen is one of best triangulation methods for Euclidean417

reconstruction. It is superior to the midpoint method and non-iterative linear methods418

especially when 2D error is considered.419

Let the two corresponding points be q = (x, y, 1), q′ = (x′, y′, 1) which are420

obtained by projecting the 3D point Q on the images by q = PQ , q′ = P′Q. Letting421

pi denote the ith row of P, linear-Eigen triangulation estimates Q by finding the least-422

squares solution of423

AQ = 0 where A =


xp3 − p1

yp3 − p2

x′p′3 − p′1
y′p′3 − p′2

 (7)
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(a) (b)

Figure 15: Depiction of doubling the focal length and decreasing the camera-scene distance for triangulation

on normalized rays. On the top row, images are shown with the object observed. Bottom row shows the

field of view of the camera (top and bottom 3D rays) corresponding to the object and the distance error on

the object (δ or 2δ) corresponding to one pixel noise in the images. C represents the camera center (i.e.

pinhole). (a) Camera on the left has twice the focal length of the camera on the right. Distance between

the camera and the scene is equal for both cameras. One pixel noise in the zoomed image corresponds to

lower angular error and distance error on the object. (b) Both cameras have equal focal length values but the

distance between the camera on the left and the scene is half the distance between the camera on the right

and the scene. Triangulation with the normalized 3D rays already gives support to left camera to minimize

the angular error.

Two rows are added to A for each view. This method is extended by adjusting the424

weights of rows iteratively such that the reprojection error will be decreased resulting425

in iterative linear-Eigen triangulation. The weights for the first and the second views426

are 1
p3Q

and 1
p′
3Q

respectively [17].427

Please note that we employ this method with the calibrated 3D rays instead of raw428

pixels. Since the projection in omnidirectional cameras can not be expressed linearly429

as in perspective cameras, hybrid triangulation can only be performed with the 3D rays430

outgoing from the effective viewpoints of the cameras.431

The perspective cameras in hybrid systems tend to have higher resolution than the432

omnidirectional ones. To benefit from their resolution, we increased the weight of433

rows coming from the perspective images. With the mentioned weighting strategy, we434

observed improvement in the accuracy of the estimated 3D coordinates. We relate the435

amount of weighting to three factors: the scale ratio (rs), the ratio of distances to the436

scene (rd) and the position factor (p) as explained below. We propose to multiply the437

rows of the perspective image by s438

s = rs · rd · p (8)
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In Fig. 15a, the case of doubling the focal length is depicted. If one pixel noise in439

the left image causes δ distance error, then the same amount of noise in the right image440

causes 2δ error. In this case, we need to increase the weight of the zoomed camera. We441

use the ratio of scales of the objects (rs = 2).442

Distance to the scene affects the triangulation as well. The rays diverge as the cam-443

era comes closer to the scene. The object in the image gets larger but this is different444

from the zoom effect as depicted in Fig. 15b. Triangulation already gives support to the445

left camera because it minimizes the reprojection error on the normalized 3D rays. We446

should not increase the weight and we use rd to compensate the zoom effect (rs = 2,447

rd = 0.5, rs · rd = 1).448

The third and the last factor is the position of the points in the omnidirectional449

image. When the objects in the scene have approximately the same height with the450

camera, x and y values in the (x, y, 1) form of the normalized 3D rays have higher451

values compared to the values in the perspective images. These high values cause an452

unwanted support for the rows coming from the omnidirectional image. We observed453

that, for the points near the periphery of the omnidirectional image, increasing weight454

of perspective camera improves the results. The value of p is chosen empirically from455

our experiments. Detailed results of the experiments analyzing various cases are given456

in Section 5.1.457

Please note that for two perspective cameras, iterative linear triangulation is per-458

formed on pixels (not on 3D rays) and since the reprojection error in the image is459

minimized, the zoomed image is supported without requiring an extra weighting. Dis-460

tance effect works same as the zoom effect and position of the point in the image does461

not have a significant effect for perspective cameras.462

5.1. Experiments with Simulated Images463

We first analyze the improvement of the proposed weighted triangulation approach464

on a simulated environment. We generated a total of 1000 points which are regularly465

distributed on a planar grid and added Gaussian location noise to all simulated points.466

We define two main scenarios to distinguish between the cases when observed points467

are below or at the same horizontal level with the omnidirectional camera. We depicted468
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(a) (b)

Figure 16: Camera and grid positions in the scene of triangulation experiments. (a) The grid is below the

catadioptric camera, side view. (b) The grid is at the same horizontal level with the cameras, top view.

Distance between the cameras is 2 meters. Maximum distance between the cameras and the scene (2l) is 2.5

meters.

pair rs rd w = 1 w = s improvement

Omni1-Pers1 2 1 0.0250 0.0242 3.2%

Omni1-Pers1 4 1 0.0334 0.0302 9.6%

Omni1-Pers2 2 0.5 0.0200 0.0200 -

Omni2-Pers1 1 2 0.0170 0.0166 2.4%

Table 5: Results of triangulation experiments for Fig. 16a. For w = 1 and w = s (proposed weighting) the

values in the table are 3D coordinate estimation error in meters, median of 1000 points in the grid. Exper-

iments were repeated 30 times and the values in the table are the mean of these 30 experiments. Gaussian

location noise with σ=2.0 pixels was added to both images.

these two cases in Fig. 16. Two of the camera positions are selected each time also469

with varying focal length values to create the analyzed scale ratios.470

For the case that the grid is below the omnidirectional camera, results are given in471

Table 5 where rs and rd are indicated as well. The applied weight value is represented472

with w. Errors for w = 1 and w = s are compared in the table, where s is the473

proposed weighting computed by Eq. 8 and p = 1 for the current case. We express474

the improvement as percentage of decrease in error. Improvement becomes significant475

when rs increases which is quite likely for hybrid pairs. For the Omni1-Pers2 pair, the476

effects of rs and rd cancel each other and s = 1 already. We included this case to477

indicate the importance of rd because we tested that w = 1 is better than w = 2.478

When the grid is close to the same horizontal level with the omnidirectional camera479

(Fig. 16b) we conducted the same experiments, results of which are given in Table 6.480

Applying the proposed weighting strategy decreases the 3D error by 2.3-9.6%. We481
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pair rs rd p w = 1 w = s improvement

Omni1-Pers1 2 1 2 0.0266 0.0254 4.5%

Omni1-Pers1 4 1 2 0.0317 0.0288 9.2%

Omni1-Pers2 2 0.5 2 0.0221 0.0216 2.3%

Omni2-Pers1 1 2 2 0.0171 0.0162 5.3%

Table 6: Results of triangulation experiments for Fig. 16b. Error is expressed by 3D coordinate estimation

error in meters, median of 1000 points in the grid. Experiments were repeated 30 times and the values in the

table are the mean of these 30 experiments. Gaussian location noise with σ=2.0 pixels was added to both

images.

took p = 2 as it gave the best results in our experiments. When the observed scene482

points are below the horizontal level of the omnidirectional camera but not directly483

below (a case between Fig. 16a and Fig. 16b), it is appropriate to increase p from 1484

to 2 gradually as the 3D points get higher. The value of p can be assigned according485

to the vertical angles of the 3D rays corresponding to the points as demonstrated in the486

experiment in Section 5.2.487

5.2. Experiments with Real Images488

Here, we combine the triangulation with the steps of point matching and epipolar489

geometry estimation to complete an SfM experiment with a real hybrid image pair. We490

analyze the improvement gained by the proposed weighted triangulation.491

We use the RANSAC output for Pers2 σ1.5 - VCP1 pair (cf. Table 4), which has492

70 correspondences. We estimate the essential matrix with the calibrated rays of these493

point correspondences. In Fig. 17, correspondences on the images and the recon-494

structed scene are given. 3D coordinates were computed with the proposed weighted495

iterative linear-Eigen triangulation, where Eq. 8 was used to compute weights. We496

take rs=1.65 which was already extracted in the point matching step for the current497

image pair (Section 3.2, Table 2). We know that rd ≈ 2 since we set up the experiment498

environment, however one can also use the result of an initial triangulation (like Fig.499

17 bottom row) to obtain an approximate ratio of distances to the scene. We employ500

varying p values for the points according to the vertical angles of their corresponding501

3D rays. The vertical angles change between 50◦-90◦ (0◦ indicates directly below the502
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Figure 17: Reconstruction with a hybrid real image pair. Selected correspondences on images are viewed

on top. Images were cropped to make the points distinguishable. At the bottom, 2D top-view (left) and

2D side-view (right) of the reconstructed scene can be observed. Op and Oo shows the perspective and

omnidirectional camera centers, (Xp,Yp,Zp) and (Xo,Yo,Zo) shows the perspective and omnidirectional

camera axes, respectively. Plots were aligned w.r.t. the axes of the perspective camera. Actually, the optical

axis of the omnidirectional camera (Zo) is perpendicular to the floor and the perspective camera is looking

slightly down.

omnidirectional camera) and we take p gradually increasing from 1.5 to 2 with the503

increasing angle.504

To estimate the improvement gained by the proposed weighting scheme, we com-505

pare a number of real world distances with the ones in the estimated 3D structure. We506

measured 30 distances in the scene corresponding to the distances between estimated507

3D points. They are not in the same scale, thus we equalized the scale of the distances508
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rs rd p w = 1 w = s improvement

1.65 2 1.5-2 0.88 0.83 5.7%

Table 7: Distance estimation errors after the triangulation for the hybrid real image pair. Error is expressed

with the absolute difference between the measured real-world distances and the estimated distances after

triangulation (in centimeters). Values are the median of 30 distance errors. For reference, these 30 measured

distances vary between 11.2 cm. and 31.8 cm. with a median value of 16.5 cm.

using the ratio between the averages of 30 distances. We measure the accuracy with509

the absolute difference of the distances at the real scene and at the reconstructed scene.510

Table 7 shows the median of these 30 distance errors (in centimeters) for w = 1 and511

w = s. One can see the improvement brought by the proposed weighting scheme.512

6. Adding Views and Bundle Adjustment513

To integrate additional views for multi-view SfM, we employed the approach pro-514

posed by Beardsley et al.[18]. In this approach, when a sequence of views is avail-515

able, initially SfM is applied for the first two views. Then, for each new view, feature516

matching is performed with the previous view and the features which correspond to the517

already reconstructed 3D points are detected. The projection matrix of the new view is518

computed using these final 2D-3D matches.519

Sparse bundle adjustment (SBA), see e.g. the implementation of Lourakis and Ar-520

gyros [19], has become popular in the community due to its capability of solving high521

dimensional minimization problems (with many cameras and 3D points) in a reason-522

able time. We employed this method for our system of mixed cameras. We modified523

the projection function with the sphere model projection and intrinsic parameters with524

sphere model parameters. During bundle adjustment, 11 parameters are optimized for525

each view consisting of five intrinsic (ξ, focal length, aspect ratio, principal point co-526

ordinates), three rotation and three translation parameters.527

7. Multi-view SfM Experiments528

We first present a multi-view SfM experiment with real images of mixed cameras,529

thus we employ the entire pipeline shown in Fig. 1. All the views (two omnidirectional,530
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Figure 18: Estimated camera positions, orientations and scene points for the hybrid multi-view SfM exper-

iment which includes the images in Fig. 6. Side-view is shown at left. At right and in the middle, two

different top-views are shown. Plots at the left and in the middle are aligned w.r.t. the axes of the perspective

camera no.1 (X1,Y1,Z1). Actually, the optical axes of the omnidirectional cameras (Zoi) are perpendicular

to the floor and the perspective cameras are looking slightly down. The top-view at right is aligned with the

omnidirectional cameras, therefore this view is perpendicular to the floor. It can be observed that the feature

points on the wall and the clipboard, at the top of the point cloud, are correctly aligned.

three perspective) in Fig. 6 were used for this experiment. Estimated coordinates of531

the points (551 points were reconstructed) and estimated camera positions are shown532

in Fig. 18.533

We performed SBA on this structure and camera parameters. The reprojection er-534

rors before and after SBA are given in Table 8 for all five views, where we observe that535

the errors were considerably decreased after SBA. The errors in the omnidirectional im-536

ages are relatively higher than the ones in the perspective images. This is mainly due537

to the fact that the number of correspondences between the omnidirectional and per-538

spective images is fewer than the number of correpondences between two perspective539

images. This decreases the accuracy of motion estimation for omnidirectional views as540

they are added to the structure. The table also shows the 3D errors (in cm.) before and541

after SBA. They were estimated in the same manner with the triangulation experiment542

given in Section 5.2 and Table 7. Same 30 real world distances were compared with543
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Pers1 Pers2 Pers3 Omni1 Omni2 3D error

Before SBA 0.43 0.44 0.60 0.91 0.67 0.287

After SBA 0.23 0.19 0.24 0.39 0.47 0.268

Table 8: The mean values of reprojection error in images before and after SBA (in pixels) for the hybrid

multi-view SfM experiment. 3D errors are the distance estimation errors (in cm.) and expressed with the

absolute difference between the measured real-world distances and the estimates in the reconstruction. Same

30 real world distances and same method in Table 7 were used to compute distance errors.

the ones in the estimated 3D structure.544

To demonstrate the effects of the bundle adjustment, we measured the 3D move-545

ment of the reconstructed points and the translation and rotation of the cameras between546

the initial reconstruction and the SBA result. The mean 3D movement for a point is547

0.37cm. The average rotation in one axis is 0.3, 0.7, 1.9 and 3.6 degrees for cameras548

Pers2, Pers3, Omni1 and Omni2 respectively. Translation values are 2.1, 5.5, 14.4 and549

7.8 cm. in the same order. Pers1 is kept fixed during the bundle adjustment and the ro-550

tation and translation values are estimated with respect to Pers1. We observe relatively551

higher rotation and translation adjustment for the omnidirectional cameras which were552

added to the structure with fewer common points. This is also true for Pers3 when553

compared to Pers2, since Pers3 was added to the structure only by the points common554

with both Pers1 and Pers2 by which the initial two view reconstruction was made.555

7.1. Merging 3D Structures of Different Hybrid Image Pairs556

Here, we discuss the theoretical and practical aspects of how an omnidirectional557

camera can combine the 3D structures viewed by two or more perspective cameras558

which do not have an overlapping view. This is often the case in a surveillance system559

scenario where an omnidirectional camera and limited number of fixed perspective560

cameras are present. The perspective cameras alone will not be adequate for SfM561

if their views do not overlap. Even when there is a small overlap, camera motion562

estimation becomes unreliable. Using omnidirectional cameras is advantageous since563

it reduces the number of perspective images to cover the gaps between the main images564

of interest.565
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Figure 19: Depiction of merging 3D structures estimated with different hybrid image pairs.

Figure 20: Depiction of aligning and scaling the 2nd 3D structure w.r.t. the first one to obtain a combined

structure.

A way of merging such perspective views is using more than one omnidirectional566

view. Some points are reconstructed only with the omnidirectional views to form a low567

resolution structure. Each perspective view can find common points with this structure568

and can be added to the structure by using the approach described in Section 6 and569

implemented at the beginning of this section.570

Let us elaborate a more complicated case where only one omnidirectional view is571

used (Fig. 19). The multi-view approach does not work in this case since no common572

points can be reconstructed between perspective views. However, it is still possible to573

combine the 3D structures by pairing the perspective views with the single omnidirec-574

tional view. The two 3D structures obtained with different hybrid pairs are in different575

scales because the generated structures are up to a scale factor each. First, we have to576

align the two structures using the rotation and translation of the common view, then we577

have to adjust the scale (Fig. 20).578

Let (R12,t12) be the rotation and translation between the first perspective image579
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and the omnidirectional image, and (R23,t23) be the ones between the omnidirectional580

image and the other perspective image. We need rotation and translation of the third581

camera (2nd perspective image) with respect to the first camera, Kext,3 = [R13 | t13],582

which can be computed as:583

R13 = R23 · R12
584

t13 = t23 + R23 · t12

To obtain the structure as a whole, we need to estimate the ratio of scales between585

two independently estimated structures and adjust the scale of the second structure by586

multiplying its translation vector (t13) by this ratio. In the following experiment, thanks587

to the small overlap between the perspective images, we use the 3D points which are588

available in both reconstructions to estimate the scale ratio. Since these points should589

be located at the same place in both reconstructions, the ratio of the distances between590

the points and the origin in the two reconstructions is the scale ratio. If there is no591

overlap, knowledge of real world distances in the scene or the distance between the592

cameras can be used to obtain the scale ratio.593

In Fig. 21, on the top row, we observe the two perspective images, which have little594

overlap in their field of view. Out of 187 points, only four are common in all three595

images. These are the points that we align to obtain the scale ratio between the two596

structures. The estimated scale ratio is 0.334 in this experiment.597

7.2. Integrating High Resolution and Low Resolution 3D Structures598

In this section, we demonstrate that a high resolution (dense) and a low resolution599

(sparse) 3D structure can be obtained by a hybrid system for the purposes of fore-600

ground and background reconstruction respectively. The experiment we provide here601

serves as a proof-of-concept for the scenario in which omnidirectional cameras provide602

low resolution background reconstruction whereas the images of perspective cameras603

are used for modeling objects of interest in the foreground. In this way, the hybrid604

method relieves the need for a mobile camera or a network of cameras for background605

reconstruction.606

The images of our experiment were taken in an everyday office environment. Two607

omnidirectional views were employed which is enough for a sparse background point608
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Figure 21: Correspondences between the perspective images (top row) and the omnidirectional image

(bottom-left). Top-view of the estimated structure is given at bottom-right. Along with the reconstructed

3D points we also observe the positions, orientations and field of views of the cameras. The circle around

the middle camera indicates the omnidirectional view.

reconstruction. Foreground object points were reconstructed by seven perspective609

views which resulted in a denser point cloud. In Fig. 22, sample perspective and omni-610

directional images and reconstructed points can be seen. At bottom-left, dense structure611

(around 500 points) obtained by seven perspective images and estimated positions and612

orientations of perpective cameras are shown. When the sparse points reconstructed613

with omnidirectional views are added, we obtain the structure shown at bottom-right.614

There are a total of 614 points.615

7.3. Increasing Perspective-SfM Accuracy with Omnidirectional Cameras616

The wide field-of-view of omnidirectional cameras can increase the accuracy of617

camera motion estimation in a perspective camera SfM. In this section, we demonstrate618
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Figure 22: Sample perspective and omnidirectional images and reconstructed points for the experiment of

low and high resolution 3D structure integration. At bottom-left, dense structure obtained by seven perspec-

tive images and estimated positions and orientations of perspective cameras are shown. At bottom-right, we

see the whole structure containing the reconstructed background points and the dense point cloud belonging

to the objects on the desk. There are a total of 614 points. Plots are aligned so that the optical axes of the

omnidirectional cameras and also the viewer’s looking direction are perpendicular to the floor. Objects in the

room are indicated in the figure. Note that the location accuracy of the background objects is lower than that

of the objects on the desk since only two omnidirectional images were used for background reconstruction.
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that adding an omnidirectional view considerably increases the accuracy of perspective-619

only structure and motion estimation.620

In our experiment, we used a sequence of perspective images such that camera621

motion forms a closed loop. The scene is the same as the one used in Fig. 22. After the622

SfM pipeline was performed, the distance between the estimated positions of the first623

and the last cameras was measured. Since the actual positions of these two cameras are624

same, the measured distance indicates the drift in motion estimation. Fig. 23a shows625

the initial estimation of the structure and the positions of the cameras together with the626

drift. We compared this initial drift with the drift after applying bundle adjustment for627

both with and without adding the omnidirectional view. Fig. 23b shows the result for628

perspective-only case and Fig. 23c shows the result when the omnidirectional camera629

was added. We normalized the measured drift by dividing by the average of distances630

between all cameras in the loop. The initial drift was 20.55 cm, drift values after631

bundle adjustment were 18.05 cm and 0.95 cm for perspective-only SfM and hybrid632

SfM, respectively. This result clearly indicates that adding an omnidirectional camera633

considerably improves the accuracy of camera motion estimation. Approximately, one634

fifth of the scene points have a match in the omnidirectional view i.e. one fifth of635

the points were reconstructed with the omnidirectional view and at least one of the636

perspective views.637

7.4. Outdoor SfM with an Image Sequence from a Video638

To test the hybrid SfM in a more realistic scenario, we performed an outdoor exper-639

iment and used an image sequence from a captured video. More specifically, a frame640

per second was taken from a recorded video and a sequence of 18 frames was gener-641

ated. A perspective SfM was performed which results in a point cloud (dense in certain642

locations in the scene). Then, this structure was enlarged with two omnidirectional643

views and point reconstructed with these two views which are from the regions that644

were not viewed by the perspective cameras. Fig. 24 shows sample perspective and645

omnidirectional images used in this experiment.646

In Fig. 25, the result of the perspective SfM with the camera positions is shown647

at top-left. The estimated camera motion in particular is shown at a larger scale at648
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(a) (b) (c)

Figure 23: Results of the experiment to compare perspective-only SfM with hybrid SfM using the measured

drift in a camera motion that forms a closed loop. The measured drift was normalized by dividing by the

average of distances between all cameras in the loop. (a) The initial estimation of the structure and the

positions of the cameras (viewed from the top). The drift depicted in the figure which has a value of 20.55

cm. (b) The result for perspective-only SfM after bundle adjustment. The drift decreased to 18.05 cm.

(c) The structure and motion estimation after bundle adjustment when an omnidirectional view was added,

which resulted in a drift value of 0.95 cm. The omnidirectional camera is indicated with a circle around it.

Notice the increased number of points in the structure. There are nearly 500 reconstructed points and more

than 100 of them were reconstructed with the omnidirectional view and at least one of the perspective views.

top-right. The motion is nearly linear and there are minor changes in camera ori-649

entations. When the omnidirectional views were added, we obtained the integrated650

structure shown in Fig. 25 bottom row. Dense parts were reconstructed using the per-651

spective views and sparse points in different directions were reconstructed with the652

omnidirectional views.653

8. Conclusions654

We described an SfM pipeline and proposed new approaches or improved existing655

methods for the steps of this pipeline so that hybrid camera scenarios are covered.656

It had been stated that directly applying SIFT is not sufficient to obtain good results657

for hybrid image pairs. In our study, we analyzed the reasons of false matches in SIFT658
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Figure 24: Sample images from the outdoor hybrid SfM experiment presented in Section 7.4.

and proposed a preprocessing algorithm that increases the matching performance con-659

siderably. After a few remaining false matches are eliminated by employing RANSAC660

on the hybrid epipolar constraint, we obtain a reliable set for motion estimation. Thus,661

we present automatic point matching between omnidirectional and perspective images.662

We introduced the normalization matrices for lifted coordinates so that normaliza-663

tion and denormalization can be performed linearly. We evaluated the alternatives for664

motion estimation and decided on estimating the essential matrix with the calibrated665

3D rays of point correspondences. We proposed a weighting strategy for iterative linear666

triangulation to improve the structure estimation accuracy and presented results with667

simulated and real data. Finally, we employed sparse bundle adjustment by adapting it668

to use the sphere camera model.669

In conclusion, it is possible to perform hybrid multi-view SfM in an effective and670

automatic way. The usage of the sphere camera model throughout the pipeline was671

shown in this study. With the real image experiments, we showed that the proposed672

approach can be used effectively in the presence of hybrid camera systems. We han-673

dled two real world scenarios where employing a hybrid system is advantageous. One674

of them is a surveillance setup where the number of perspective cameras is limited675

and an omnidirectional camera can combine the 3D structures viewed by two or more676

perspective cameras which do not have an overlapping view. Another scenario is the677

3D reconstruction in which the omnidirectional cameras provide low resolution back-678

ground reconstruction whereas the images of perspective cameras are used for model-679

39



Figure 25: Integrated point cloud as a result of the outdoor hybrid SfM experiment. Samples of the images

used in this experiment are shown in Fig. 24. Top-left: Estimated structure with perspective frames. Most of

the points are from the border of the garden, plants in the garden and the facade of the house. Top-right: Es-

timated camera motion in particular at a larger scale. There are a total of 18 perspective views. Bottom: The

integrated structure after the omnidirectional views were added. Dense parts were reconstructed using the

perspective images and sparse points exist in different directions were reconstructed with the omnidirectional

images. All the cameras are located at the center of the figure.

40



ing objects in the foreground. We also showed that adding omnidirectional cameras to680

perspective camera SfM increases the accuracy of camera motion estimation.681

One of the future research directions may be developing an efficient hybrid dense682

depth estimation method and integrating it to the pipeline so that the framework can683

serve image-based 3D reconstruction applications.684

Usage of fisheye camera images was limited to the point matching step in our study,685

since these cameras are not single-viewpoint systems and “ideally” can not be repre-686

sented by the sphere model. On the other hand, it had been stated through empirical687

observations that the projection of some fisheye lenses can be approximated by the688

sphere camera model [40]. Such fisheye cameras can be used in the rest of the SfM689

pipeline as well.690
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