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Abstract—Prediction of lane-changing maneuvers of surround-
ing vehicles is important for autonomous vehicles to under-
stand the scene properly. This research proposes a vision-based
technique that only requires a single in-car RGB camera. The
surrounding vehicles’ maneuvers are classified as right/left lane-
change or no lane change conforming to most lane change
detection studies in the literature. The usual practice in previous
studies is feeding individual video frames into CNN to extract
features and afterward using an LSTM to classify the sequence
of features. Differently, in our study, we exploit the power of
ensembling the prediction results of two methods. The first one
uses a small feature vector containing the image coordinates of
the target vehicle and classifies it with an LSTM. The second
method works with a simplified scene representation video (only
the target vehicle and ego-lane highlighted) and it is based
on a self-supervised contrastive video representation learning
scheme. Since maneuver labeling is not required in the self-
supervised learning step this enables the use of a relatively
large dataset. After the self-supervised training, the model is
fine-tuned with a labeled dataset. Our experimental study on a
well-known lane change detection dataset reveals that both of the
mentioned methods by themselves achieve state-of-the-art results
and ensembling them increases the classification accuracy even
more.

Index Terms—contrastive representation learning, autonomous
vehicle, lane change detection, driver assistance systems

I. INTRODUCTION

Lane change detection, a crucial component of autonomous
driving, is an active and evolving area of research. The task
of developing effective and reliable methods for detecting
lane change maneuvers is complex and multifaceted. This
complexity arises from the diverse and dynamic nature of the
road environment, filled with various objects and conditions
that can obstruct the tracking of vehicle movements. Obstacles
such as other vehicles, pedestrians, cyclists, and infrastructure
can obscure the view of the road, complicating the task of
monitoring other vehicles’ positions and actions. Moreover, the
manner in which vehicles execute lane changes is not uniform.
For instance, the speed of lane change may vary greatly. Given

these conditions, the need for high accuracy algorithms in lane
change detection is of paramount importance.

The domain of lane change detection research has witnessed
the application of a diverse array of methodologies. Certain
studies ( [1]–[4]) have proposed solutions for the prediction
of future trajectories of all observable vehicles, drawing upon
their historical positions. Conversely, other research efforts (
[5]–[7]) have targeted the classification of maneuvers, utilizing
features such as velocity, acceleration, closeness to the lane
line, and the distance between the ego-vehicle and the target
vehicle. These features are derived from image or sequential
image data gathered from the vision system of the ego vehicle
or surveillance cameras. In recent developments, vision data
has been directly employed as input to deep neural networks
( [8], [9]), enabling the extraction of a broad spectrum of
features to detect the target vehicle’s maneuver.

In this study, we presented an ensemble learning method-
ology that integrates two distinct deep learning models, both
of which were previously developed by us for the purpose
of classifying cut-in maneuvers. In the initial work [10], we
utilized an LSTM network to process a set of features based on
the image coordinates of the target vehicle, subsequently clas-
sifying its maneuver as either a cut-in or lane-pass. We adopted
self-supervised contrastive video representation learning in the
following work [11]. A ResNet3D-18 model was trained in
a self-supervised fashion using contrastive learning with a
set of augmentations. Thereafter, we fine-tuned the model
with labeled data to make the cut-in/lane-pass classification
decision. Now, we repurpose these two models for lane change
detection, a more complex three-class classification problem.
Moreover, to obtain an enhanced combined performance we
ensemble them at decision level. The training and evaluation
of these individual models, as well as the ensembling stage,
were conducted using the widely recognized Prevention Lane
Change Prediction dataset [12]. This dataset, frequently used
in lane change classification studies, contains video clips
labeled according to the type of lane change as no lane
change, left lane change, and right lane change (Figure 1).
We transformed the video clips into a scene representation of979-8-3503-0659-0/23/$31.00 ©2023 IEEE



Fig. 1: Overview of the lane change maneuvers and Preven-
tion Dataset labeling approach (EV: ego vehicle, TV: target
vehicle).

the target vehicle and ego lane. Utilizing scene representations
instead of raw video frames offers two main benefits. Firstly,
they offer a simplified, abstract view of the scene, aiding the
model in concentrating on the key elements for maneuver
detection. Secondly, they lower the input data’s dimensionality,
enabling an efficient learning process and reducing the risk of
overfitting. Figure 2 provides an overview of the proposed
ensemble approach, offering a visual representation of the
integrated methodology.

The key contributions of our work can be summarized as
follows:

1) The self-supervised video representation learning is em-
ployed for lane change detection for the first time. A
benchmark dataset for lane change detection is used. Ex-
periment results reveal that with self-supervised learning
(pre-training), classification accuracy improves.

2) We ensembled two approaches for the lane change
detection task and observed that ensembling increases
the classification accuracy.

II. RELATED WORK

In vehicle maneuver prediction, numerous studies have har-
nessed the power of recurrent neural networks (RNN) and long
short-term memory (LSTM) networks. For instance, Laimona
et al. [13] concentrated on assessing the performance of RNN
and LSTM on a lane change classification dataset, featuring
merely the central coordinates of the target vehicle. Despite
the limited feature set, LSTM delivered notable results, em-
phasizing its suitability for such applications. Similarly, in a
previous study, we formed a feature vector by using the target
vehicle’s bounding box center (x,y) coordinates, width, and
height information. This vector was utilized for training an
LSTM network to detect cut-in and lane-pass maneuvers [10].

Trajectory-based maneuver classification studies, where the
trajectory of a surrounding vehicle is projected on the ground
plane, also made use of LSTM networks. Ding et al. [1]
presented an LSTM encoder architecture for maneuver-based
trajectory prediction, coupling predicted maneuvers with map
information. Their approach included refining the initial future
trajectory through nonlinear optimization methods, consider-
ing interaction-related elements, traffic rules, and map data.

Deo and Trivedi [3] employed an LSTM encoder to extract
the temporal information of the surrounding vehicles, subse-
quently constructing a ’social tensor’ through the utilization of
a social pooling layer [14]. To determine the spatial correlation
of vehicles, they employed a set of CNNs, and for the
classification of six different types of maneuvers, they trained
six different LSTM decoders. These maneuvers included three
lateral (right lane change, left lane change, no change) and two
longitudinal (normal speed, brake) maneuvers. Scheel et al.
[4] reported individual maneuver prediction accuracies with
an attention-based LSTM network, feeding in trajectories for
right and left lane change and follow maneuvers.

Vision-based studies do not rely on trajectories but they
directly use the features extracted from the frames. Not sur-
prisingly, recent ones train deep convolutional neural networks.
When lane change detection is considered, a commonly used
dataset is the Prevention Dataset [12]. A study by Izquierdo
et al. [15] investigates two deep learning methodologies for
predicting vehicle lane changes. The first technique in the
study adopts a multi-channel representation of temporal data
by mapping the scene appearance, target vehicle motion his-
tory, and surrounding vehicles’ motion histories to the red,
blue, and green channels respectively, which is then passed
as input to a CNN model. The second approach blends CNN
and LSTM to encapsulate temporal characteristics, with both
methodologies aiming to embed local and global contexts
with temporal insights to forecast lane change intentions. A
relatively recent study [9] created a method that initially crops
Regions of Interest (ROIs) from the original frames and creates
two different versions of the input video, namely the high
frame rate video and its optical flows. This approach facilitated
a comparison between two-stream CNNs and spatio-temporal
multiplier networks. A subsequent study by the same team
[8] broadened this comparison by incorporating a slow-fast
network, an approach that utilizes videos of both high and low
frame rates. This addition reportedly improved performance,
indicating a slight edge over the previously evaluated alterna-
tives.

Self-supervised contrastive representation learning has re-
cently gained popularity due to its achievements in computer
vision [16], [17]. Different from supervised learning, self-
supervised learning uses unlabeled data to learn meaning-
ful and characteristic representations. In recently proposed
methods (MoCo [18], SimCLR [19]), two augmentations of
a sample are tried to put close in the embedding space,
whereas different samples are tried to put far apart. Then this
representation capability is fine-tuned with supervised training
with a smaller amount of labeled data.

Qian et al. [20] put forth a Self-supervised Contrastive
Video Representation Learning (CVRL) methodology de-
signed to extract spatiotemporal visual features from unlabeled
videos. The features are learned via a contrastive loss function,
which strategically aims to converge two augmented video
clips from an identical video within the embedding space while
concurrently diverging clips originating from disparate videos.
To address the difficulties associated with vehicle maneuver



Fig. 2: Outline of the presented ensemble learning approach. The target-based simplified view is used to extract features for
each of the networks. Center coordinates, height, and width of the target vehicle mask are given as input to the LSTM model
(below). The simplified view clip is directly processed with video representation learning model (above). For the ensembling
part, score-based fusion is applied to the prediction probabilities of each model.

classification, we applied the same strategy to simplified
video clips [11], where only the vehicle masks remain in the
scene along with the ego-lane mask. These simplified frame
sequences were then used to train a 3D residual network.

In this paper, we use this video-based approach for lane
change detection for the first time on a benchmark lane change
detection dataset. We investigate appropriate augmentations
for the self-supervised learning phase. We also ensemble this
video-based approach with the LSTM approach that takes the
target vehicle’s image coordinates as input.

III. METHODOLOGY

A. Scene Representation

The use of simplified scene representations over raw video
frames offers dual advantages. First, they present an abstract
view of the scene, enabling the model to concentrate on
crucial elements for maneuver detection. Second, they de-
crease the dimensionality of the input data, thereby enhancing
the efficiency of the learning process and reducing the risk
of overfitting. Utilizing simplified scene representations also
helps to create augmentations that resemble the variability
that exists in real-world maneuvers such as the scaling of
scene objects or faster/slower maneuvers. This strategy aids
the model in recognizing a broad spectrum of maneuver
patterns and scenarios, thus better generalizing to unseen data.
Moreover, scene representations facilitate the creation of more
diverse and challenging negative pairs, thereby boosting the
efficacy of the contrastive learning approach. Given that our
lane change detection dataset involves making decisions per
target vehicle, our simplified view includes only the target
vehicle mask and the ego-lane mask (Figure 3). The target
vehicle mask is generated using Detectron 2 [21], which is
open-source and has a state-of-the-art instance segmentation
method, while the ego-lane mask is extracted using YOLOPv2
[22].

Fig. 3: The generation of a target-based scene representation
is illustrated with an example of a left lane change maneuver
from the Prevention Dataset. Distinct colors are used to
illustrate overlapping masks of vehicles and the ego-lane. The
figure presents four frames from a single sequence, while both
the LSTM Network and the 3D network utilize 20 frames
for classification purposes. The height of the video frames is
reduced to 400 from 600 pixels to eliminate the hood of the
ego-vehicle and a portion of the sky.

B. Classification with Image Coordinate Features

In our previous work [10], we developed a pipeline for
detecting cut-in maneuvers, where we employed an LSTM
architecture in the classification stage. We have now applied
the same LSTM structure with identical hyperparameters to
the task of detecting lane change maneuvers. The architecture
of the LSTM used can be examined in Figure 4.

We extract the vehicle’s center coordinates and its width
and height from the target-based simplified view and give
these as a feature vector into the LSTM network. To align the
sequence lengths of methods intended for ensemble learning,
each maneuver is represented using 20 frames, equating to 10
frames per second.

C. Classification based on Video Representation Learning

To encode spatio-temporal features from video frames, we
utilized the ResNet3D-18 [23] architecture, which employs
3D convolution kernels instead of the original 2D kernels. In
this study, two distinct backbone architectures were trained:
a standalone ResNet3D-18 and a ResNet3D-18 supplemented
with a multi-layer projection (MLP) head on top, following the



Fig. 4: Utilized LSTM architecture.

guidelines suggested by [19], [20]. In the supervised retraining
phase, we adopted the most successful model architectures
from our previous research. We fine-tuned the ResNet3D-18
model (trained without an MLP in the self-supervised training
phase) using a linear classification head, and the model trained
with an MLP (ResNet3D-18+MLP) was fine-tuned with a
four-layer nonlinear classification head.

The self-supervised training was conducted by applying
an InfoNCE contrastive loss [24] on feature tensors derived
from both the original and augmented video sequences. These
sequences were extracted utilizing the aforementioned video
encoders. The contrastive loss mechanism defines augmented
versions of a given video input as positive pairs and treats other
inputs as negative pairs. Consequently, it shapes the feature
space such that positive pairs are brought closer together while
others are pushed further apart, as dictated by the following
equation: L = 1

N

∑N
i=1 Li and Li:

Li = − log
exp (sim (zi, z

′
i) /τ)∑2N

k=1 1[k ̸=i] exp (sim (zi, zk) /τ)
(1)

here zi, z
′
i represent the encoded representations of the two

augmented clips of the ith video and N denotes the number of
samples in the batch, thereby producing a total of 2N augmen-
tations per batch. The function sim(u,v) = u⊤v/∥u∥2∥v∥2
represents the inner product between two ℓ2 normalized vec-
tors, while 1[.] serves as an indicator to exclude the self-
similarity of video zi. Lastly, the temperature parameter is the
τ > 0. Figure 5 provides a detailed illustration of the proposed
self-supervised maneuver representation learning phase.

The video encoder was trained in a self-supervised manner,
using the Adam optimizer [25] with an initial learning rate of
0.1, a batch size of 32, and a temperature τ set to 0.1. For
the subsequent supervised retraining phase, we retained the
same Adam optimizer but modified the batch size and learning

Fig. 5: Self-supervised Video Representation Learning. Ini-
tially, we generate simplified video clips by isolating the
vehicle and ego-lane masks from the raw videos. Subsequently,
a variety of temporally consistent augmentations (crop, shear,
rotation, TET) are randomly applied to these simplified video
clips prior to their input into our chosen video encoder
(ResNet3D-18 or ResNet3D-18+MLP). The feature tensors ex-
tracted from each sample in the mini-batch are compared using
the InfoNCE loss. This process is designed to converge the
representations of positive pairs (indicated by green arrows)
while diverging the representations of negative pairs (indicated
by red arrows).

rate, decreasing them to 8 and 0.001 respectively. The training
process explored various epoch numbers, ranging from 200 to
500, to optimize performance.

Augmentations. To ensure that the self-supervised model
learns the spatial and temporal aspects of the scene, the aug-
mentations we use should mimic different situations that may
not be present in the labeled dataset. Simultaneously, these
augmentations should avoid including scenarios that would not
occur in real-life traffic. In light of this, we implemented four
distinctive augmentations for video representation learning.
random rotation and random shear were utilized to mimic
the diverse variations in the road view as captured by the in-
vehicle camera, while center crop was employed to simulate a
potentially narrower field of view of the camera. To maintain
the consistency of representations and ensure they are not
influenced by the random selection of augmentations, these
augmentations are kept temporally consistent. That is to say,



the same augmentation is uniformly applied to all frames of
a video clip.

Alongside the previously stated three augmentations, we
also introduced an additional modification, referred to as
temporal elastic transformation (TET) [26]. This adjustment
acknowledges the potential for changes in the speed of the
maneuvering vehicle over time. TET operates in one of two
ways: it may either elongate the beginning and end of a video
while condensing the middle or conversely, it compresses the
beginning and end while expanding the central portion.

Algorithm 1 provides a detailed definition of the process
of generating spatial and temporal augmentations in self-
supervised contrastive learning.

IV. EXPERIMENTS

A. Dataset

The Prevention dataset [12] was specifically designed for the
lane change prediction task. This comprehensive dataset en-
compasses 356 hours of driving video, predominantly recorded
on highways, and includes detections, trajectories, maneuver
labels, and raw data. They provide three labels for vehicle
maneuvers: ‘no lane change’, ‘left lane change’ and ‘right lane
change’. The distribution of the dataset (labeled maneuvers)
is given in Table I.

TABLE I: Sample distribution of lane change detection dataset.

Label No. of samples Average no. of frames
No LC 3375 50.9
Left LC 218 96.8

Right LC 343 80.1

B. Experimental Results

Initially, we conduct a comparative analysis of the stand-
alone classification performances of the three approaches we
have mentioned. This is accomplished by reporting the highest
fold and 5-fold cross-validation accuracies, along with F1
scores, on the task of lane change classification (Table II).

TABLE II: 5-fold cross-validation results of image coordinate-
based LSTM (LSTM3class) approach (Section III.B) and self-
supervised representation learning approach (Section III.C) on
the Prevention dataset.

Backbone Best fold
acc (%)

5-fold CV
acc (%)

Best fold
F1-score

5-fold CV
F1-score

LSTM3class 91.83 89.90 81.60 79.68
R3D-18 92.89 92.13 75.38 73.13
R3D-18+MLP 93.06 91.93 75.90 72.63

Methods were ensembled using soft voting and weighted
sum strategies. Soft voting finds the consensus prediction
by combining the class prediction probabilities from both
models. For instance, in our case, the prediction outputs
from the LSTM network (LSTM3class) and self-supervised
learning model were separately summed for each class, with
the maximum probability determining the final prediction. The
weighted sum strategy on the other hand assigns each model
a specific weight, leveraging the models’ complementary
strengths. Weights for a method range from 0.1 to 0.9 with
the total sum equaling to 1. This weighting approach allowed
us to investigate the influence of each model’s relative weight
on the ensemble performance systematically.

The ensemble results of the LSTM3class model with two
distinct self-supervised video representation learning models
are provided in Figures 6 and 7. Here, R3D signifies the
standalone result of the self-supervised ResNet3D-18 model
and R3D+MLP represents the standalone result of the self-
supervised ResNet3D-18+MLP model, while LSTM3class in-
dicates the standalone result of the image coordinate-based
LSTM network. The weights of the models in the ensemble
method are denoted as [W1, W2], where W1 is the weight
applied to LSTM3class, and W2 is the weight applied to the
self-supervised method. Notably, the soft voting and [0.5, 0.5]
weighting are represented by a single bar as they are the same.

Fig. 6: Ensemble learning results comparison of LSTM3class
and ResNet3D-18 on Prevention Lane Change Prediction
dataset. *Soft voting also means [0.5, 0.5] weighted average.
5-fold cross-validation was applied.



Fig. 7: Ensemble learning results comparison of LSTM3class
and ResNet3D-18+MLP on Prevention Lane Change Pre-
diction dataset. *Soft voting also means [0.5, 0.5] weighted
average. 5-fold cross-validation was applied.

When we examine the previous studies on the Prevention
dataset, we see that lane change classification accuracies can
reach at most 90% [8]. According to results in Table II, our
video-based approach with the ResNet3D-18 model managed
to improve upon the success of methods in the literature by
∼ 2% in terms of the accuracy metric. LSTM3class alone
is not able to exceed the best accuracy in the literature, but
it boosted the accuracies when used in an ensemble with
ResNet3D-18 or ResNet3D-18+MLP. As seen in Figures 6 and
7, with the best [W1, W2] pairs, ensembling reached %94.05
accuracy (∼ 2% improvement) for the model using ResNet3D-
18 and %94.25 accuracy (∼ %2.5 improvement) for the model
using ResNet3D-18+MLP. Even if equal W1 and W2 are used
(soft voting), the improvement in accuracy is significant when
compared to standalone methods.

V. CONCLUSIONS

In this study, we introduced an ensemble learning approach
that combines two distinct deep learning models for lane
change detection. The first model uses an LSTM network to
process target vehicle information, while the second employs
a self-supervised contrastive video representation learning
method. Our approach was evaluated using the Prevention
Lane Change Prediction benchmark dataset, transforming
video clips into a scene representation of the target vehicle
and ego lane.

The proposed simplified view and the maneuver-related aug-
mentations we implemented have proven effective in enhanc-
ing the performance of self-supervised learning in lane change
detection. Furthermore, ensembling the image coordinate-
based LSTM approach and the video-based self-supervised ap-
proach has increased accuracy. This improvement is attributed
to their different modalities and tendency to error in unique
instances, underscoring the power of ensemble methods in
exploiting the distinct strengths of different models. This work
highlights the potential of combining diverse deep learning
models for more accurate lane change detection.
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