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Abstract

In this work, we focus on a localization technique that is
based on image retrieval. In this technique, database im-
ages are kept with GPS coordinates and the geographic lo-
cation of the retrieved database image serves as an approxi-
mate position of the query image. In our scenario, database
consists of panoramic images (e.g. Google Street View) and
query images are collected with a standard field-of-view
camera in a different time. While searching the match of
a perspective query image in a panoramic image database,
unlike previous studies, we do not generate a number of per-
spective images from the panoramic image. Instead, taking
advantage of CNNs, we slide a search window in the last
convolutional layer belonging to the panoramic image and
compute the similarity with the descriptor extracted from
the query image. In this way, more locations are visited
in less amount of time. We conducted experiments with
state-of-the-art descriptors and results reveal that the pro-
posed sliding window approach reaches higher accuracy
than generating 4 or 8 perspective images.

1. Introduction

Visual localization can be defined as estimating the posi-
tion of a visual query material within a known environment.
Visual localization approaches have attracted an increasing
attention [ 18] especially due to the limitation of GPS-based
localization in urban environment (e.g. signal failure due to
tall buildings or a cluttered environment).

The localization technique that we employ is based on
image retrieval, in which the geographic location of the
retrieved image serves as an approximate position of the
query image. Last decade witnessed many computer vision
techniques proposed to solve this type of visual localization
problem ([30, 29, 1]). Especially if the database and query
images are collected at different seasons/years, referred as
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long-term localization ([27, 16, 25]), there are numerous
challenges such as illumination variations, weather condi-
tions, seasonal changes, viewpoint variations and changing
objects in the scene. Any method to solve city-scale local-
ization problem should address these long-term appearance
changes.

In our setting, the environment is represented by a set
of images acquired at different locations. Thus, rather
than a metric localization, it is a topological localization
(also called as location recognition or place recognition
[10, 2, 7, 14]) that could help the navigation of mobile
agents. In our work, we use 360 degree vision, panoramic
images in particular. The reason to use panoramic im-
ages is to exploit their wide field-of-view (FOV) advantage.
With this advantage, recognition of correct location can be
achieved in some scenarios where standard FOV cameras
fail due to their non-overlapping fields of view.

Our main contribution is that, while matching a per-
spective (standard FOV) image in a database consisting
of panoramic images, unlike previous studies, we do not
produce a number of virtual perspective images from the
panoramic image. Instead, taking advantage of employing
CNNs, we slide a search window in feature maps obtained
from the panoramic image. Similarity between the descrip-
tors extracted from the feature maps of database and query
images is computed. In this way, many more positions are
visited in a panoramic image which increases the probabil-
ity of a healthy match with the query image. We conducted
experiments with three different state-of-the-art descriptors
and showed the superiority of the proposed approach.

The paper is organized as follows. In Section 2, the re-
lated work is summarized and our novelty is clarified. In
Section 3, our novel sliding window approach is outlined,
as well as the preparation of the dataset used in the experi-
ments is explained. The design and the results of the exper-
iments are presented in Section 4. Section 5 concludes the

paper.



2. Related Work

We will present the related work in two parts. First, we
will review image-based localization before and after CNN
era. Second, we will focus on localization studies that ex-
ploit panoramic images.

Before the invasion of CNN based methods, image re-
trieval based localization techniques mostly depend on Bag-
of-Features approaches [17], where SIFT-like [ 3] descrip-
tors extracted from all images in the database are clustered
to define a set of ‘visual words’, then the images are repre-
sented with those visual words. VLAD (Vector of Locally
Aggregated Descriptors) [ |] managed to do the same task
with compact representations which enabled us to use large
datasets. In time, researchers proposed techniques that are
more robust to repetitive structures [30], illumination and
viewpoint changes [29], and even changes over time such
as seasonal changes.

Recent studies consider using features from the deep
convolutional layers of CNNs. [2] compares different fea-
ture extraction techniques for CNN:ss, it also gives a compar-
ison with non-CNN methods. NetVLAD [1] adds a layer
to a standard CNN that converts last convolutional layer to
a compact descriptor to mimic the behavior of VLAD [11].
Recently, a region similarity based method (SFRS, [29]) has
outperformed NetVLAD and other previous approaches on
several visual localization benchmark datasets.

Another family of CNN-based methods have especially
focused on image retrieval (E.g. Is this the Eiffel Tower?)
rather than accurate localization. These methods also re-
late to us since ours is a topological localization task. To-
lias et al. [28] proposed to use regional max-pooling of
CNN activations for instance retrieval (R-MAC) and Rade-
novic et al. [20] improved this idea by proposing a train-
able Generalized-Mean (GeM) pooling layer rather than us-
ing maximum activations. An extensive comparison pro-
vided in [19] depicts the success of GeM on image retrieval
benchmark datasets.

The studies mentioned above did not use 360° imagery,
they matched perspective (standard FOV) query images
with perspective images in the database. However, wide
FOV can overcome the difficulties when viewing angles of
perspective images do not overlap. An example scenario is
given in Figure 1, where a perspective camera is attached
on top of a car. In this case, database consists of images
taken with a single orientation (moving direction of the car).
If the query image is captured with a different orientation,
scene will be completely different. This scenario is actu-
ally very common, benchmark datasets that researchers use
for image-based localization are mostly constructed in this
manner [22].

When we consider the previous work on localiza-
tion/place recognition with 360 degree imagery, we can
group them into two. In the first group, both database and

(b)

Figure 1. Typical scenario that database images are collected with
a perspective camera attached on top of a car. a) An image in
database. b) An image taken by a car moving in the opposite di-
rection but at the same point where image in (a) is taken. When
query image is (b), it is not possible to correctly match it with
database images

query images are panoramic ([7, 15, 8, 14, 31, 3, 10, 12]).
Some researchers directly work on omnidirectional images
(dough-nut images obtained with an omnidirectional sen-
sor), others work after converting them to panoramic im-
ages. In this first group of studies, problem turns into
panorama-to-panorama image matching. Some use SIFT,
GIST or originally proposed descriptors, whereas recent
ones use features extracted via CNNs ([31, 3, 10, 12]).

For the studies in the second group, database is com-
posed of panoramic images and query images are taken with
a standard FOV camera ([24, 32, 9]). We find this sce-
nario more realistic since panoramic database images can
be collected offline (e.g. Google Street View panoramas),
whereas query images can be taken by a standard camera
in a car or another mobile agent. In the previous studies,
panoramic database images were used to generate 4 or 8
gnomonic projections along the equator. A gnomonic pro-
jection is a virtual perspective image, where image plane
is tangent to the sphere of the observant. Thus, 4 non-
overlapping gnomonic projections (each having 90° FOV)
corresponds to the cubemap representation (used for local-
ization in [32]). Figure 2b shows 4 images generated in this
way. In another study, 8 non-overlapping gnomonic projec-
tions (each with 45° FOV) were used [9].

The approach of generating perspective views actu-
ally converts the problem into a perspective-to-perspective
matching, but with increased number of images. This strat-
egy is unable to provide good matching since quite a num-
ber of query images (e.g. Figures 2c and 2d) do not have a
good overlap ratio with virtual perspective images. Gener-
ating more perspective images with overlapping FOV would
alleviate the overlap problem in Figures 2c and 2d. How-
ever, that also increases the computation time. Different
from the previous work, we propose to search query image
in the panoramic image without generating gnomonic im-
ages. As will be explained in Section III, we do this via a



Figure 2. a) An equirectangular panoramic image. b) 90° FOV
perspective images generated from the panoramic image at four
different orientations (0°, 90°, 180° and 270°). c) A query image
belonging to 45° orientation. d) Another query image belonging
to 225° orientation. Query images (c) and (d) are considerably
different from the closest cubemap images. This will result in a
poor matching performance. Also notice the illumination changes
in (d) which makes the problem even harder.

search window on the CNN feature maps obtained from the
panoramic image. In this way, we check many locations in
the panoramic image with a very low computational cost.

3. Methodology and Dataset
3.1. Preparing the dataset

Panoramic images in our dataset were obtained from
Google Street View (images of 2019) and downloaded via
Street View Download 360 application'. Perspective query
images belong to the same spots and they are a subset of a
larger dataset provided by UCF [33] which were collected
from Google Street View before 2014. This time gap results
in not only illumination changes but also some seasonal and
structural changes (e.g. change of a facade of a building)
between database and query images and conforms better to
the long-term localization scenario ([27, 16, 22]). The im-
ages are from the downtown area of Pittsburgh, PA. We col-
lected database and query images at 80 different positions
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Figure 3. The area in central Pittsburgh, PA where database and

query images in our dataset were collected (source: Google Maps).

which are spread to 0.6 km? (Figure 3). Each position has
one panoramic database image and four perspective query
images (UCF dataset) each covering a 90° FOV (without
overlap).

3.2. Searching a perspective query image within a
database of panoramic images

We search the perspective query image within the re-
gions of panoramic images using convolutional layers of
CNN (Figure 4). In other words, we encode regions of
CNN feature maps into feature vectors (descriptors). This
is performed in a sliding windows manner. This way, a
panoramic image is processed without converting it into
several virtual perspective images and it will not be fed into
CNN several times. Our panoramic images are equirectan-
gular. Le. from top to bottom, it covers +90° to -90° vertical
viewing angle and from left to right, it covers -180° to 180°
horizontal viewing angle. Since query images are vertically
centered around horizon, we only slide our search window
along the equator (see Figure 4a).

To encode CNN feature maps into descriptors, several
techniques can be used. First family of these techniques
pool the features in various ways ([28, 20, 21]). Let X be
a WxHxK tensor corresponding to the feature map in the
last convolution layer of CNN. X; represents a single 2D
activation plane in the feature map, where ¢ = 1, ..., K and
Xi(p) is the response at position p. If we select the max-
imum value in X; (Eq.1), this results in a K-size feature
vector for the image (MAC, [21]).

f=[fi,.. o, f]", fi= ;IgéXi(p) (D

This simple idea was improved in [28] (R-MAC) by en-
coding multiple image regions into the same feature vec-
tor and in [20] by proposing a trainable Generalized-Mean
(GeM) pooling layer rather than using maximum or average



of activations (Eq. 2).
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It is shown in [20] that ¢; is learnable and GeM pooling
behaves as max-pooling [21] when ¢; — co. Radenovic
et al. [20] trained GeM with a structure-from-motion based
approach defined in [23]. Training samples are derived from
7.4 million Flicker images which consist of popular land-
marks, cities, and country images. Since it’s well suited for
most image retrieval tasks, while employing GeM we did
not perform an additional training with our dataset.

A second family of feature extraction techniques use
a training set of images taken at different times at close-
by spatial locations. This is cast as a weak supervision
since the annotations can be noisy due to position shifts
and limited overlap between views. NetVLAD [1] uses
a triplet ranking loss where positive and negative sam-
ples are arranged according to their distance to the anchor
image. Recently, a self-supervised method benefits from
image-to-region similarities (SFRS[0]), especially designed
to deal with noisy labels, has outperformed previous ap-
proaches on visual localization benchmark datasets. Sec-
tion IV will present our results with R-MAC[28], GeM[20]
and SFRS|[6].

The descriptors have backbone CNNs that accept vary-
ing size input and produce convolution layers accordingly.
Thus, we are able to give panoramic and perspective im-
ages to the same CNN and receive large feature maps for
panoramic database images whereas small feature maps
for queries. Figure 4d shows the sum of the values in
the 31x62x512 feature map of a 16-layer CNN for the
panoramic image. Figure 4e shows the same for the query
image and its feature map size is 16x16x512.

Some previous studies (e.g. [20, 4, 5]) that worked on
semantic segmentation or object detection in panoramic im-
ages trained special CNNs to handle the distortions which
become substantial especially towards the top and bottom
of the panoramic image (north and south poles). This is
crucial, for instance, if you detect objects close to upper or
lower side of the image. However, it is not crucial for our
task since we only search along the equator (since query
images cover that area) where little distortion exists. More-
over, training a CNN with limited number of panoramic
images cannot reach the performance of CNNs that was
trained with huge datasets. Thus, we employed the pre-
trained descriptors as they are.

4. Experimental Results and Discussions

As mentioned in Section 2, previous work on searching
perspective query images in a panoramic image database

panoramic
image

descriptor
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Figure 4. a) A 500x1000 panoramic image in the database, five
different colored sliding windows which have the same size with
the query image in (b). Red window actually matches with the
query image. b) Perspective query image (250x250). In this ex-
ample (a) is the correct image to be retrieved when (b) is given
as query. c) Feature maps in CNN convolution layers are repre-
sented when panoramic and query images are given as input. Dif-
ferent size feature maps are obtained when different size images
are given to CNN. d) Sum of the values in 31x62 feature map of
the image shown in (a). €) Sum of the values in 16x16 feature map
of the image shown in (b). Although these are not the descriptor
vectors, one can observe the high values in corresponding regions.
f) Descriptor (GeM, [20]) matching score between the query and
the sliding window in (a). Highest score comes from the correct
position in the panoramic image (red window).

converts panoramas into 4 or more gnomonic projections,
then performs perspective-to-perspective matching. There-
fore, we compare our sliding window method with that ap-
proach. Initially, we compare with cubemap approach that
corresponds to non-overlapping 4 gnomonic 90° projections
(cf. Figure 2b). For each query image, a best match (provid-
ing highest matching score) panoramic image is obtained. If
this panoramic image belongs to the same position, retrieval
is considered as successful. For the same query image, the
best matching database cubemap image is obtained. If this
cubemap is from the same position, retrieval is considered
as successful. We do not check how much overlap actually



Accuracy| Accuracy| Accuracy
Part-1 Part-2 Merged
(%) (%) (%)

4 gnomonic views

(Cubemap) 56.9 64.4 54.7

8 overlapplgg 200 200 g

gnomonic views

Sliding window

14x14 stride=2 70.0 81.9 722

Sliding window

14x14 stride=3 67.5 81.9 70.6

Sliding window

16x16 stride=2 67.5 76.9 69.7

Sliding window

16x16 stride=3 67.5 74.4 67.8

Table 1. Retrieval Accuracies with GeM Pooling [20]
(Database: GoogleStreetView and Query: UCF Pittsburg)

exist between query and retrieved cubemap.

Accuracy of the cubemap approach depends on how
much of the query image’s field of view (FOV) overlaps
with the cubemap image’s FOV. In a lucky case, there is a
perfect overlap, but in an unlucky case, only 45° of 90° FOV
overlap (Figure 5). To be fair, while generating cubemap
projections we equally covered a range of overlaps from the
best (90°) to the worst (45°). More specifically, for 80 po-
sitions in the experiment, 20 of them have 90° overlap, 20
have 75° overlap, 20 have 60° overlap and 20 have 45° over-
lap.

Images of part-1 and part-2 datasets are collected from
40 positions each. The merged dataset is created by merg-
ing part-1 and part-2 adding up to 80 positions. For the
merged dataset, the last column of Table 1 reports the re-
trieval accuracy of the cubemap approach together with the
accuracies of the proposed sliding window approach, where
GeM was used as the descriptor for both approaches. Ta-
ble 1 also depicts the effect of the sliding window size
and the stride size for our approach. The best performance
(72.2%) is obtained with 14x14 windows and stride=2, but
even with other parameters, sliding window approach sig-
nificantly outperforms cubemap approach (54.7%).

Accuracies are generally higher for small datasets (part-
1 and part-2) as less number of alternatives exist to compete
with the true match (first two columns of Table 1). However,
relative success of the proposed approach stays same.

Another comparison is made with 8 overlapping
gnomonic projections (90° FOV images, each overlaps 45°
with the next one). This alleviates the reduced overlap prob-
lem in Figure 5c because it guarantees to have a consider-
able overlap with the query images (cf. Figure 6). While
generating 8 gnomonic views from our dataset, we prepared
equal number of examples with the best (90°) and the worst

Figure 5. a) Query image (UCF dataset), b) A 90-degree overlap-
ping cubemap (best case), ¢) A 45-degree overlapping cubemap
image (worst case)

(67.5°) overlaps. Results are in the second row of Table
1. As expected, accuracy increased (67.5%) when com-
pared to cubemap approach, however it is still below the
proposed method. In Figure 6, we see two examples from
the dataset where 4-gnomonic and 8-gnomonic methods fail
but the proposed method retrieves the correct image.

We also evaluated the compared methods according to
Recall @N metric (Figure 7a), where retrieval is considered
successful if at least one of the top N retrieved dataset lo-
cations is correct. The proposed method remained on top
while success increases with N.

Other Descriptors.

Results presented so far were obtained with GeM[20].
Figures 7b and 7c show the results for R-MAC[28] and
SFRS[6] respectively. Please observe that the relative per-
formance of the compared methods did not change, which
proves the superiority of the proposed method. We also
observe a significant performance increase for all methods
with SFRS. This success is partly due to the fact that SFRS
model we employed was trained with a dataset of Pittsburgh
images, namely Pitts30k-train (cf. [6] for details).

Computation Cost.

Table 2 shows average descriptor extraction costs for
the proposed sliding window, cubemap and 8-gnomonic
approaches on our database of 80 positions. The pro-
posed sliding window approach runs 2 times faster than
8-gnomonic approach and performs better. Please note
that the reported times increase proportionally with larger
dataset (e.g. there are 3500 positions in Pitts250k-test [30])
and with higher image resolutions. The search time of both
methods took milliseconds, hence it was not added to the
table.

Experiments were run on a computer with an Intel i7-
8700K processor, a memory of 16 GB and an NVIDIA
GeForce GTX 1080 graphics processing unit.

5. Conclusions and Future Work

In this work, we search perspective query images in a
panoramic image database for long-term localization in an
urban environment. In our setting, the environment is rep-



Figure 6. Two examples from the dataset where 4-gnomonic and 8-gnomonic approaches fail but the proposed method retrieves the correct
image. In both (a) and (b), upper-right corner shows the query image and the bottom row shows generated 8 gnomonic views. In (a),
overlap between query and gnomonic images is not perfect, also there is an illumination difference. In (b), overlap between query and
gnomonic images is perfect but there are illumination, viewpoint and long-term changes (e.g. vegetation).

resented by a set of images acquired at different locations.
Thus the developed method can be seen as an assistive local-
ization technique rather than a complete navigation system
of a mobile agent.

Database and query images are collected from Google
Street View and covers a variety of appearance changes
such as illumination variations and seasonal changes. As
a novelty, we proposed to search query images in a
panoramic image database via sliding windows on feature
maps of CNN. We compared our approach with the classi-

cal approach of converting panoramic images into several
gnomonic projections before searching. We conducted ex-
periments with three state-of-the-art descriptors and showed
that the sliding window approach performs better than pro-
ducing cubemap (4 non-overlapping) or more frequent (8
overlapping) images while requiring less computation time.
One can suggest to generate a higher number of overlapping
perspective images to increase the chance of good match-
ing. However, that would also increase the cost. As conclu-
sion, while matching query images and panoramic database
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Figure 7. Recall@N graphs for the merged dataset (80 locations)
with descriptors a) GeM[20], b) R-MAC[28] and c¢) SFRS [6].

images, we advise to perform the search on the feature
maps of CNN. Actually, most of the applications that re-
quire search of a narrow FOV image in large FOV images
can benefit from the proposed approach.

In the future, depth maps or semantic information ex-
tracted from the images can be exploited to increase the lo-
calization accuracy.

Process
Descriptor extraction from our
database for 500x1000
panoramic images
Descriptor extraction from our
database for 4 gnomonic
images, 250x250 each
(Cubemap)
Descriptor extraction from our
database for 8 gnomonic
images, 250x250 each

Computation Cost

2.04 sec.

1.96 sec.

3.97 sec.

Table 2. Descriptor Extraction Cost of Sliding Window and
Gnomonic Projection Approaches
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