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Supervisor, Department of Computer Engineering
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ABSTRACT

LOCALIZATION OF CERTAIN ANIMAL SPECIES IN IMAGES VIA TRAINING
NEURAL NETWORKS WITH IMAGE PATCHES

Object detection is one of the most important tasks for computer vision systems.

Varying object size, varying view angle, illumination conditions, occlusion etc. effect

the success rate. In recent years, convolutional neural networks (CNNs) have shown

great performance in different problems of computer vision including object detection

and localization. In this work, we propose a novel training approach for CNNs to localize

some animal species whose bodies have distinctive pattern, such as speckles of leopards,

black-white lines of zebras, etc. To learn characteristic patterns, small patches are taken

from different body parts of animals and they are used to train models. To find object

location, in a test image, all locations are visited in a sliding window fashion. Crops are

fed to CNN, then classification scores of all patches are recorded. To illustrate object

location, heat map is generated by the classification scores of the patches. Afterwards,

heat maps are converted to binary images and end up with bounding box estimates of

objects. The localization performance of our Patch-based training is compared with Faster

R-CNN – a state-of-the-art CNN-based object detection and localization algorithm. While

evaluating the performances, in addition to the standard precision-recall metric, we use

area-precision and area-recall which represent the potential of Patch-based Model better.

Experiment results show that the proposed training method has better performance than

Faster R-CNN for most of the evaluated classes. We also showed that Patch-based Model

can be used with Faster R-CNN to increase its localization performance.
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ÖZET

İMGE PARÇALARI KULLANILARAK EĞİTİLEN YAPAY SİNİR AĞLARI İLE
İMGELERDE BELİRLİ HAYVAN TÜRLERİNİN KONUMLANDIRILMASI

Nesne bulma bilgisayarla görü sistemlerinin en önemli görevlerinden biridir. De-

ğişen nesne boyutu, değişen bakış açısı, ortam aydınlatması, örtüşen nesneler ve benzeri

etkenler başarım üzerinde etkilidir. Son yıllarda, Evrişimli Yapay Sinir Ağları (EYSA)

birçok bilgisayarla görü problemlerinde (nesne konumlandırma ve nesne tespiti) çok iyi

bir performans göstermiştir. Bu çalışmada, bedeni üzerinde ayırt edici bir desene sahip

hayvanların, örneğin: benekli leoparlar, siyah beyaz çizgili zebralar gibi, konumunu bul-

mak için EYSA kullanan yeni bir yaklaşım öneriyoruz. Desen özelliklerini öğrenmek

için, vücudun çeşitli bölgelerinden küçük parçalar alınır ve modelleri eğitmek için kul-

lanılır. Test imgelerinde nesne konumunu bulmak için bütün konumlara kayan pencere

yaklaşımı ile uğranır. Parçalar EYSA’na verilir ve tüm parçaların sınıflandırma skor-

ları kaydedilir. Nesne konumlarını görselleştirmek için tüm parçaların sınıflandırma sko-

rları kullanılarak sıcaklık haritası üretilir. Daha sonra sıcaklık haritaları ikili imgelere

çevrilir ve nesneyi kapsayan kutu tahmini yapılarak süreç sonuçlanır. Önerdiğimiz Parça-

tabanlı eğitim yönteminin nesne konumlandırma performansını EYSA kullanan güncel

algoritmalardan biri olan Faster R-CNN ile karşılaştırdık. Performans değerlendirmesi

yaparken standart kesinlik-anma metriğine ek olarak, Parça-tabanlı yöntemi daha iyi ifade

ettiği için alan-kesinlik ve alan-anma metriğini de kullandık. Deney sonuçlarına göre

önerilen eğitim yöntemi Faster R-CNN’e göre neredeyse değerlendirilen tüm sınıflar için

daha iyi bir performans göstermektedir. Aynı zamanda, Parça-tabanlı yöntem Faster

R-CNN ile kullanılarak Faster R-CNN’in konumlandırma başarısının artırılabileceği de

gösterilmiştir.
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CHAPTER 1

INTRODUCTION

In the last decades, visual data has grown exponentially. Thus computer vision ap-

plications have become a part of our society, such as self-driving car, autonomous robotic

systems, image understanding, face detection, object tracking, etc. The core of these

applications may require image classification, object detection, and image segmentation.

In our daily life, visual object classification arises whenever we meet an object.

And also most of industrial works highly depend on image classification. Desired results

are obtained by precisely classification of objects. To solve this problem, scientist have

made great effort to develop several approaches [8], [9], [1], [43].

Object detection aims a true classification of an object and also well fitting to its

bounding box. During 2000s, many algorithms have been proposed for object detection,

such as Bag of visual Words (BoW) [3], Histogram of oriented gradients [4], Deformable

Part Models [6]. In recent years, artificial neural networks became popular in visual object

detection and other related tasks due to their great success.

Actually artificial neural networks is not a new research area. In 1943, McCulloch

and Pitts built a model that demonstrate how neuron works in brain [19]. Computers be-

came more sophisticated in 1950s, this improvement gave people to simulate theoretical

neural networks. Marvin Minsky, who was founder of MIT AI Lab, and Seymour Papert

wrote a book that is related to analysis on limitation of Perceptrons [20]. In this book,

this approach of AI was thought to have a dead-end due to lack of trace on the system and

its critical nature. This conclusion caused to freeze funding and publication to AI. Most

people believed that this paper caused a AI winter. Paul Werbos proposed that backprop-

agation can be used in neural networks [41]. He has solved how to train multilayer neural

networks in his PhD thesis. But due to the AI winter, it required a decade for researchers

to work in this area. In 1986, this approach became popular [32]. First time in 1989, it

was applied to a computer vision task which is handwritten digit classification [14]. It has

demonstrated an excellent performance. Again it took more than a decade for computers

to handle more complex tasks and to learn from huge amount of image data.

An outstanding performance was observed in 2012. AlexNet [13] got the 1st place
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in ImageNet 2012 classification task with achieving 16.4% error rate. There was a huge

difference between 1st place (16.4%) and 2nd place (26.1%). Several factors were respon-

sible for gaining this outstanding performance. (i) Training dataset reasonably extended,

(ii) GPU computing has been used, (iii) better training method which employs ”dropout”

[13] has been implemented.

1.1. Related Works

Object detection with CNNs is a highly popular research area. There exists many

approaches, for instance OverFeat [34], Faster R-CNN [30], and Oquab et al.[25]. We are

especially interested in the ones that focus on object localization task. In [34], OverFeat,

convolutional neural network was trained as a classifier first. After that, softmax layer was

removed and regression layer was implemented to be able to estimate object location. Ob-

jects are searched using efficient way of sliding windows. In R-CNN [7], potential object

regions are proposed by an algorithm called ’selective search’ [40] before classification.

Faster R-CNN [30] implemented region proposal step as a neural network, called Region

Proposal Network (RPN), which reduced the region proposal time significantly. Objects

are searched only in the proposed regions. In [24], Oquab et al. explained that CNNs,

even trained for image classification, carry good amount of information of object loca-

tion. By using this observation, they proposed an approach to detect object location using

CNNs [25]. They trained their algorithm using weakly-supervised learning, instead of

supervised learning. In supervised learning systems, object location is explicitly defined.

This helps algorithm to learn more explicit way. But annotation of millions of boxes are

not feasible for large-scale works. Unlike supervised learning, only contained object label

is given to the weakly-supervised learning systems.

Proposed after Faster R-CNN, You Only Look Once (YOLO) [28], did not in-

crease the detection performance but reached to real time object detection speed. YOLO

uses single CNN for both classification and object detection. Input image is divided into

grid cell, and you get n bounding box prediction for each cell. Confidence score defines

how far we are close to predict an object in bounding box. Each bounding box, and each

cell also predict a class score. Confidence score and class score are combined, and final

score is obtained.
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1.2. Thesis’ Aim and Objectives

In this work, we propose to find object location using a state-of-the-art CNN [11]

and Patch-based Training Method. Patch-based Training Method is based on training

neural network with object patches. Some example patches can be seen at Fig.1.1. To

find object location, in a test image, all locations are visited in a sliding window fashion.

Crops are fed to CNN, then classification scores of all patches are recorded. To illustrate

object location, heat map is generated by the classification scores of the patches. After

that, heat maps are converted to binary images at varying thresholds. Final object location

estimates are generated after employing a connected component analysis algorithm on

binary images.

Figure 1.1. Example Patches from Dataset.

Our experiment results showed that Patch-based Training approach has better per-

formance for area-precision and area-recall metrics than Faster R-CNN. We also observed

that Patch-based Model can be employed with Faster R-CNN to increase its localization

performance. We will call it ”Combined Model”. Faster R-CNN success is increased by

the help of Patch-based training method.

1.3. Organization of Thesis

The organization of the rest of this thesis is as follows: Chapter 2 provides basic

information about NNs; difference between CNNs and NNs; different types of activation

functions and CNN architectures. How Patch-based Model works is described in Chapter

3. Experiments and evaluation metrics are given in Chapter 4. Conclusions are given in

Chapter 5.
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CHAPTER 2

BACKGROUND

This chapter provides basic information about the structure of neural networks

(NNs) and different types of NNs, which will be beneficial to understand the following

chapters. Neural networks are inspired by brain. They are composed of a number of

neurons and layers. First NN which is Perceptron algorithm was invented in 1957 at the

Cornell Aeronautical Laboratory by Frank Rosenblatt [31]. Single layer perceptron can

only work on linearly separable problems due to its linear nature. To overcome this prob-

lem, multilayer perceptron (MLP) was invented. It consists of three or more layers, and

uses non-linear activation functions. An example architecture of multilayer perceptron

can be seen at Fig.2.1.

Figure 2.1. Multilayer Perceptron [21].

Neurons are one of the key component for NNs. At some point they can be fired,

like in brain, using with activation functions. Activation functions are also known as trans-

fer functions. They transfer input values to output values in specific manner. For example,

given inputs and outputs can be seen at Fig.2.2. In this figure, Leaky Rectified Linear Unit

(Leaky ReLU) function was used, but there are also different types of activation functions,

such as sigmoid, tanh, ReLU, etc. Output of neurons may or may not give a continuous

value (that can be transmitted to next neuron of other layers). These structure leads neu-

ral networks to have highly non-convex structure. Having highly non-convex structures
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cause many local minima and it makes algorithm hard to train. Because we may stuck at

a minima which may not be a good one (compared to global), it makes neural networks

hard to generalize. And its high complex structure require so much computation power

for large scale works. In NNs, each input pixel is connected to each neuron weights. This

phenomenon is not an efficient way of using weights when the input is an image. First,

the number of weights increase enormously when each pixel is a neuron. Second, close

pixels in images contain similar information. Inspiring that idea, instead of connecting

each input pixel to weights, convolution operation is applied on input pixels. This phe-

nomenon drastically decrease the number of weights and makes computation much faster.

For the last ten years, thanks to advancement in computation power and approach, they

enable us to train CNNs on large scale data in less required time. Basic CNNs compose

of convolutional layers, fully connected layers, activation functions, and loss functions

(SVM, softmax).

Figure 2.2. Leaky ReLU [15].

2.1. Layers of CNNs

2.1.1. Convolutional Layer

Convolutional layer is a core building of convolutional neural networks. It con-

tains plenty of learn-able filters (or kernels). Each filter is convolved across width and

height of input images. At the end of training process, filters of network are able to
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identify specific types of images which contain same types of shapes, same type of spa-

tial positions, etc. One mathematical example is given to illustrate how convolutional

layers work. In this example, 5x5 RGB image is given to the Neural Network. It is

convolved with two kernels that are 3x3x3 (height, weight, and depth). Convolution is

applied with stride size of 2. During the convolution, zero padding is added to enlarge

image size. First convolution operation can be seen at Fig.2.3(a). Element wise addi-

tion is applied in each convolution phase. For example in the first convolution, result is

[(0× 0 + 1× 0 + 1× 0 + 1× 0 + 0× 1 + 0× 2 + 0× 0 + 0× 0 + 1× 2) + (1× 0 + 0×
0+ 0× 0+−1× 0+ 0× 2+ 1× 0+ 1× 0+ 1× 0+ 0× 0) + (0× 0+ 1× 0+ 0× 0+

0× 0 + 1× 0 + (−1)× 0 + (−1)× 0 + (−1)× 1 + 1× 2) + 1(bias) = 4].

(a) (b)

Figure 2.3. (a) First convolution operation applied with filter W0. Computation gives
us the top-left member of next layer, (b) Second convolution operation.
Again applied with filter W0. Stride is equal to 2 [2].

2.1.2. Fully Connected Layer

The fully connected layer is a traditional Multi Layer Perceptrons (MLP). Each

neurons of layer is connected to next layer of each neurons. Last convolutional layer

contains high dimensional features. An example of neural network is shown at Fig.2.4.

In this example, we have four classes. Output of last convolutional layer is connected to
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fully connected layer. Final layer contains low-dimensional data, which can be given to

softmax function for classification.

Figure 2.4. Neural Network [22].

2.1.3. Activation Functions

Neural network is inspired from how a neuron works in brain. Due to this reason,

we need an activation function to make it similar. Activation function calculates weighted

sum of input neurons and then adds a bias. This operation can be seen at Eq.2.1.

y = f(
∑

wi ∗ xi + b) (2.1)

where y is output, wi is weight of neurons, xi is inputs, and b is bias. We need to decide

at some point whether neuron is activated or not.

2.1.3.1. Step Function

This is generally used by Perceptrons. If input value is higher than threshold, we

get output 1. This characteristic can be seen at Fig.2.5. So it can activate/fire the neuron.

This function generally used for binary classification. There is a major drawback. What

if we have more than two classes? Let’s assume that we have four different classes which

are cat, dog, boat and bird. Given input may be activated for more than one classes, such

as: cat, dog, and boat classes can be activated. At this point, we can not decided what

certain input class is. To solve this problem we need an analog activation function.
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Figure 2.5. Step Function [37].

2.1.3.2. Linear Function

Function output is linearly proportional to input value (Fig.2.6). The problem with

the linear function is that the gradient of the function is constant. When there is a loss, we

get the constant gradient value without considering of its input value.

Figure 2.6. Linear Function [17].

We can not get a non-linear function using with combinations of linear functions.

In most cases, linear function is not good enough to solve complex problem.
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2.1.3.3. Sigmoid Function

Sigmoid is a non-linear function (Fig.2.7) which means that combination of func-

tion is also non-linear. It also squash output value between 0 to 1. It is good, because

in linear function, output value can be anything from −inf to +inf . At horizontal axis

between −2 to +2, output value significantly change. However, there are some problem

exist with sigmoid function too. Rate of change is too small after value 4 with respect to

Fig.2.7. This low rate of change cause to vanishing gradient problem. Second problem is

that gradient calculation of sigmoid function is not easy.

y = f(wx) =
1

1 + e−wx
(2.2)

Figure 2.7. Sigmoid Function [35].

2.1.3.4. Tanh

Tanh is another activation function of neural networks. Its characteristic is similar

to sigmoid function expect its range between −1 to +1. Rate of change is stronger than

sigmoid function. Again it is widely used.

y = f(wx) = tanh(wx) =
2

1 + e−2wx
− 1 (2.3)
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Figure 2.8. Tanh Function [39].

2.1.3.5. Rectified Linear Unit

Rectified Linear Unit (ReLU) is another activation function of neural networks.

Its characteristic can be seen at Fig.2.9. ReLU is a non-linear function. Output value can

be between 0 to +inf . While using sigmoid and tanh function, almost all neurons of

network one way or another are activated. It is costly. We would like to activate neurons

sparsely. ReLU enable us to use network more effective manner in which some neurons

are not activated while random initializing. Its computation cost is less than sigmoid

and tanh. A problem with ReLU function is that, while calculation gradient and updating

weights, values horizontal line does not respond to gradient and important part of network

may become not updating during backpropagation. This problem is called dying neurons.

This problem can be partly achieved using with Leaky ReLU. Leaky ReLU formula can

be seen at Eq.2.5, where ℘ is a small constant.

f(x) = x+ = max(0, x) (2.4)

f(x) = 1(x < 0) ∗ (℘x) + 1(x >= 0)(x) (2.5)

2.1.4. Max-Pooling Layer

Max-Pooling layer is commonly used between convolutional layers to reduce pa-

rameter sizes. It makes algorithm much faster, and also it helps us to prevent from over-
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Figure 2.9. Rectified Linear Units [29].

fitting. Example input image, whose size are 4x4, and its output size after applying max-

pooling operation is shown at Fig.2.10.

Figure 2.10. Max Pooling Operation [18].

2.1.5. Dropout

Dropout is a simple regularization technique for neural network. Randomly cho-

sen some neurons are dropped out during training. It helps us to prevent overfitting. This

learning method is similar to ensemble learning. Instead of generating one solid network,

different networks are generated dropping out some neurons during the training. After

end of the training, all neurons are combined for testing.
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2.2. Different Architectures of Convolutional Neural Networks

2.2.1. Standard Convolutional Neural Networks

Convolutional Neural Networks (CNNs) consist of convolutional layers, max-

pooling layers, fully connected layers, and loss function (softmax/SVM). CNNs are sim-

ilar to standard neural networks. Instead of connecting weights to all input pixels, con-

volution is applied on each input. It enable us to scale weights in more efficient way. An

example of a standard CNN can be seen at Fig.2.11.

Figure 2.11. Architecture of Standard CNN [26].

2.2.2. Vanishing Gradient Problem

After observing huge success of convolutional neural network [13], number of

layers in neural networks have increased year by year [36][38]. Is it possible to increase

number of layer in neural networks as we want? Answer of this question, accuracy of

neural networks which have more than tens of layers is going to saturated after few it-

erations. How depth affects to neural networks is examined in [23]. Example code

can be found at following link: https://github.com/mnielsen/neural-networks-and-deep-

learning.git. Model is trained on Modified National Institute of Standards and Technol-

ogy (MNIST) handwritten dataset [16]. Several models, which have different number of

layers, have been trained. Classification accuracy can be seen at Table 2.1.

It is observed that, more than few layers does not have positive effect on accuracy.

Accuracy of model even may decrease with respect to its depth. To get an idea about why

vanishing gradient problem is occurs, simple neural network is given at Fig.2.12.

where w1, w2, ... are weights, b1, b2, ... are biases. aj is σ(zj), where σ indicates activation

function which can be sigmoid, rectified linear unit etc., and zj = wj ∗ aj−1 + bj is
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Classification accuracy %
Model that has 1-hidden layer 96.48
Model that has 2-hidden layers 96.90
Model that has 3-hidden layers 96.57
Model that has 4-hidden layers 96.53

Table 2.1. Classification accuracy of models that are trained with MNIST dataset.

Figure 2.12. Simple Neural Network [23].

weighted input to neuron (Fig.2.12). If predicted output, which is a4 in this example,

is close to actual output then cost will come near to zero. Otherwise, it will be high.

Gradient equation that is related to first hidden neuron is shown below, where C is the

cost function.

∂C

∂b1
= σ′z1 × w2 × σ′z2 × w3 × σ′z3 × w4 × σ′z4 ×

∂C

∂a4
(2.6)

Derivative of sigmoid function equals to maximum 25% of its previous value

(Fig.2.13). Thus, weights are usually satisfy at |wj × σ′(zj)| < 1/4. As a result of

that, products are decrease exponentially.

∂C

∂b1
= σ′(z1)×

1/4︷ ︸︸ ︷
w2 × σ′(z2)×

1/4︷ ︸︸ ︷
w3 × σ′(z3)×w4 × σ′(z4)×

∂C

∂a4
(2.7)

As shown in Eq.2.6, magnitude of weights is decrease to 25% of its previous value

at end of each layer. So, gradient of ∂C/∂b1 usually become 16 times smaller (or bigger)

than gradient of ∂C/∂b3. As a result, vanishing gradient phenomenon occurs and NNs

starts learning very slow.

To solve this problem, ReLU activation function is used mostly for todays CNNs.

Derivation of ReLU is shown at Eq.2.8. While backpropagation, according to Eq.2.8,

there is no attenuation of gradient that is caused by ReLU function.

f(x)
′
=

{
0, for x < 0

1, for x ≥ 0
(2.8)
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Figure 2.13. Derivation of Sigmoid Function [23].

2.2.3. Deep Residual Network

Adding tens of layers makes NNs harder to optimize, and that cause higher train-

ing error rate. It has been reported with increased depth in networks accuracy not only

saturates but also degrades after a point [10]. This is called as ’degradation’ problem and

this is not caused by overfitting. To deal with degradation problem, deep residual learning

was proposed [11]. Deep residual network consists of many ”Residual Units”. Residual

block can be applied at regular intervals. General equation is shown at Eq.2.9 [12]:

y = F (x,Wi) + x (2.9)

where x is the input and y is the output vector. F (x,Wi) symbolize residual block. Oper-

ation of F (x) + x is an element-wise addition. The formulation of F (x) + x can be seen

at Fig.2.14[11].

Figure 2.14. Residual Learning block [11].

Residual block does not increase the complexity of the model. This is the major

advantage of residual learning. Both dimension x and F (x) should be equal to apply

element-wise addition. If dimension of x and F (x) are not equal, lower dimension can be
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increased with this Eq.2.10 [11]:

yl = F (xl,Wl) +Wsxl (2.10)

F (xl,Wl), the residual block, can be made by any number of layers. Generally, it is used

with two or three layers. In our work, we employed ResNet [11], a deep residual network,

for our Patch-based Training approach.

2.2.4. Faster R-CNN

Faster R-CNN [30] is a state-of-the-art CNN-based object detection and localiza-

tion approach. It basically combines a region proposal network (RPN) with a CNN-based

classifier. Instead of sliding window on whole feature maps at classification step, only

proposed regions are classified in Faster R-CNN. It makes algorithm much faster than

previous approaches ([25], [34]). 3x3 sliding windows are applied on the last convo-

lutional layer of CNN. Each sliding window generates k anchor boxes. With different

scales and different width-height ratios, all these k boxes are centered at the location of

the current sliding window. At each location, a 256-d feature vector is computed. Two

estimations are performed using this vector; a classification score (being object or not)

and a regression value (object may shift to right/left with respect to the reference location

or may get smaller or bigger in x or y direction with respect to the reference size). These

operations are illustrated in Fig.2.15. The procedure explained above generates about

20000 region proposals for an image. Most of these are eliminated with a series of steps

according to their objectness scores and their intersection areas with each other. Classifi-

cation is performed for the remaining regions only. It helps to decrease computation load.

Whole architecture of Faster R-CNN is shown at Fig.2.16.
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Figure 2.15. RPN, which is placed on top of the last convolutional layer of CNN [30].

Figure 2.16. Faster R-CNN Architecture [5].
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CHAPTER 3

PATCH BASED TRAINING FOR OBJECT

LOCALIZATION

ResNet, a deep residual network, is selected as the CNN-based classification al-

gorithm in our work. Firstly, we evaluated its image classification performance with ex-

periments. To do that, we chose three different networks. First two of them are plain

networks which contain a few convolutional layers [26], third one is ResNet [11] with

different depths. Plain-Network-A (a very similar architecture can be seen in Fig.2.11)

consists of 3 convolution, 2 fully connected layers. Plain-Network-B consists of 5 con-

volution, 2 fully connected layers. To train these models, two classes which are leopard

and background were identified. Images are taken from ImageNet dataset [33]. We used

700 images for each class to train the models, and we tested their performance on 120

leopard, 120 background images. To evaluate the performance for all possible thresh-

old values, we plot Receiver operating characteristic (ROC) curves for all models. ROC

curves are shown at Fig.3.1. There is an obvious performance difference between plain

networks and ResNet. ResNet with 56 layers had a perfect performance. Since it has such

high classification performance, we decided to use ResNet for our Patch-based Training

approach.

3.1. Dataset Preparation & Training

To find location of animals using Patch Based Model, 5 different classes are de-

fined which are leopard, zebra, elephant, bear, and background. Stride size is chosen as

32 pixels, and 64x64 crops are taken from bodies of animals. Example patches can be

seen at Fig.3.2. Each class approximately contains one thousand image patches. Negative

class (which is background) patches are taken from the same images but from the regions

that do not contain any object parts. To train Patch Based Model, ResNet-Depth-50 model

[11] is chosen as classifier network. We use MxNet as framework.1

1https://mxnet.apache.org/
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Figure 3.1. ROC Curve of Trained Models.

3.2. Generating Heat Map

To find the relevant patches in a test image, sliding window approach was applied.

For Patch-based Model, 64x64 patches whose stride size of 32 pixels, were given ResNet-

Depth-50 [11] as inputs. For each patch, probability of belonging to one of the trained

classes is saved and then heat map is generated for a target class with respect to these

results. Example input image and generated heat map can be seen at Fig.3.3. Red color

which has the highest score means that location has been classified as the target animal

for all encompassing sliding windows. Blue color means that none of the sliding windows

including that image location was classified as the target. Heat map is generated for each

class for each input images. Maximum probability value of each 32x32 pixel area can be

4 due to intersection of four boxes. After that, number of 4 is normalized to 1.

3.3. Estimating the Bounding Box of an Object

To draw a bounding box estimate of an object, heat map of an image converted

to binary image according to the threshold values (scores) used in the test. Some image

processing techniques are benefited in this part. To eliminate small dot noises: opening

morphological operation is used. To connect separated parts: closing morphological oper-
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Figure 3.2. Instance of Patch-based Training Dataset.

(a) (b)

Figure 3.3. (a) An example input image (600x450 pixels), and (b) its generated heat
map.

ation is applied. After applying morphological operations, connected component analysis

algorithm is used to find object contours. Whole process can be seen on an example in

Fig.3.4, and as a flowchart in Fig.3.5. Some example input images and their generated

heat maps can be seen at Fig.3.6.

The work presented in Chapter 3 was presented in a conference [27] just for the

leopard class. Later on, three other animals classes are added and the experiments, results

of which are given in Chapter 4, are conducted.
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(a) (b)

(c) (d)

Figure 3.4. (a) Heat map of an input image, (b) binary image of the heat map , (c) re-
sult of opening and closing morphological operation, (d) predicted object
bounding box.

Figure 3.5. Flowchart of Patch-based Model for object detection.
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Figure 3.6. Input images are shown at first column, generated heat maps by Patch-
based Model are shown at second column.
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CHAPTER 4

EXPERIMENTS

In this chapter, we compare the results of proposed Patch-based training method

with Faster R-CNN [11]. Also we present the improvement that could be gained by com-

bining these two approaches. Section 4.1 explains the metrics that we used for evaluation

which serve as background to understand the following subsections.

4.1. Evaluation Metrics

To evaluate performance of object detection algorithms, generally precision-recall

metric is used in literature. Precision-recall formula can been seen at Eq.4.1. Detected

object is classified as a true positive if it is correctly labeled and Intersection our Union

(IoU) rate is higher than 0.5. IoU formula can be seen at Eq.4.2. Faster R-CNN, and most

of object detection algorithms, have high precision sensitivity while generating object

boxes at high threshold values. Their box sizes neither shrink nor enlarge with respect

to confidence value of boxes. Unlike general object detection algorithms, box sizes of

Patch-based Method change according to threshold values. At low confidence scores: it

has bigger boxes; at high confidence scores: it has smaller boxes. If we detect too big

boxes, according to IoU equation (Eq.4.2), we get false positive. If we detect too small

bounding boxes, again we likely to get false positive. To illustrate what is happening

more precisely, with respect to different threshold values, example of detected boxes can

be seen at Fig.4.1. This causing bumping effect on the precision-recall curve. Example

output can be seen at Fig.4.2. As threshold increases, after a point, precision starts to

decrease for Patch-based training since high confidence scores are always obtained for

small boxes and they tend to be eliminated by IoU criterion. According to the definition

of precision metric, at higher threshold values we need to localize objects more precisely.

But this definition does not fit to Patch-based training method. Even if we more precisely

localize an object, we get false positive according to Eq.4.1.
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(a) (b) (c) (d)

Figure 4.1. (a) Input Image, (b) Generated Heat Map (maximum value four indicates
that four boxes can be overlapped at the same pixel), (c) Predicted Bound-
ing Box at threshold value 30, (d) Predicted Bounding Box at threshold
value 90.

Figure 4.2. Precision-Recall Curve on Leopard Images.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(4.1)

IoU =
Boxpredicted ∩Boxgroundtruth

Boxpredicted ∪Boxgroundtruth
(4.2)
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Figure 4.3. Area Precision & Area Recall Example.

PAR(G,D) =
Area(G ∩D)

Area(D)

RAR(G,D) =
Area(G ∩D)

Area(G)

(4.3)

Although high confidence score windows by Patch-based model fit in the object

ground truth boxes, they are considered as false positive. Therefore, this precision-recall

metric is not very appropriate to present the potential of Patch-based approach. As a

metric suitable for our case, we used area-precision & area-recall metric [42] that is shown

at Eq.4.3. G is a ground truth rectangle, where D is a list of detected rectangles, where

Dj = 1, ..., |D|. In Recall axis, proportion of detected ground truth area is measured.

In Precision axis, proportion of true and false overlapped area is measured. An area-

precision & area-recall example given in Fig.4.3 to make it more clear. Area-precision &

area-recall calculation of Fig.4.3 is shown below:

PAR(G,D) =
Area(A1 + A2)

Area(DetectedBox1 +DetectedBox2)

RAR(G,D) =
Area(A1 + A2)

Area(GroundTruth)

Precision-recall metric (Eq.4.1) works like a binary classification, given input is

classified as true-positive (TP) or false-positive (FP), whereas area-precision & area-recall

metric works like an analogue classifier. There is no true or false values.
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4.2. Test Sets

4.2.1. Testing on Two Classes

Training set composes of 400 leopard, 450 zebra images for Faster R-CNN Num-

ber of images used for Patch-based Training is 50 for leopard and 50 for zebra classes.

From these images approximately a thousand patches are extracted for each class. We

tested performance of patch based training model and Faster R-CNN on 82 leopard,

and 61 zebra images. Area-precision & area-recall curve of leopard class can be seen

at Fig.4.4, area-precision & area-recall curves of zebra class is shown at Fig.4.5. Accord-

ing to area-precision & area-recall curves, Patch-based Training Method has show better

performance than Faster R-CNN for both classes.

Figure 4.4. Area-Precision & Area-Recall Curve on Leopard Images.

4.2.2. Testing on Four Classes

We extended our first dataset to measure performance on different classes. Second

dataset consists of bear, elephant, leopard, and zebra classes. Bear and elephant do not

have distinctive patterns on their body as leopard and zebra do. These classes are inten-

tionally chosen to observe if there is a performance decrease for them. Faster R-CNN is

trained with 446 bear images, 351 elephant images, 400 leopard images, and 450 zebra
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Figure 4.5. Area-Precision & Area-Recall Curve on Zebra Images.

images. Patch Based Training Model requires much less data than Faster R-CNN. Num-

ber of 35 bear images, number of 20 elephant images, number of 50 leopard images, and

number of 50 zebra images are used to train Patch-based Model. Again, approximately a

thousand image patches are extracted for each class. Area-precision & area-recall curves

of bear, elephant, leopard, and zebra classes ares show at Fig.4.6, Fig.4.7, Fig.4.8, and

Fig.4.9 respectively.

Figure 4.6. Area-Precision & Area-Recall Curve on Bear Images.

Patch-based Training Model outperform Faster R-CNN for elephant, leopard and

zebra classes. Both model did not perform well on bear images; Faster R-CNN has shown

slightly better performance than Patch-based Training Model. Some false predicted ex-
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Figure 4.7. Area-Precision & Area-Recall Curve on Elephant Images.

amples of Patch-based Training Model are shown at Fig.4.10, Fig.4.11, Fig.4.12, and

Fig.4.13 respectively. In Fig.4.10, Fig.4.11, and Fig.4.12, Patch-based Model prone to

predict bear patches as elephant class patches. In Fig.4.11 and Fig.4.13, it is also a little

bit confused with background class and divides the probability to three classes: back-

ground, bear, and elephant. This causes to get low scores (probability) for bear at actual

bear location. With these results we have seen that performance of Patch-based Train-

ing is very good for classes with distinctive patterns (leopard & zebra). For elephant

class, success slightly decrease. Finally for bear class where the body can be both mixed

with elephants and background, the localization performance becomes lower than Faster

R-CNN.

4.2.3. Combined Model Testing on Four Classes

In this section, we investigate the performance of a new model. The new model is

a combination of Patch Based and Faster R-CNN models. Each model was trained on four

classes, which are bear, elephant, leopard, and zebra, independently. Patch Based Model

is used as reference classifier. Because it has a better localization sensitivity but with

small size of predicted boxes. For a given input, object detection is made by both models

independently. Probability of Faster R-CNN detected boxes are re-evaluated using with

Eq.4.5. Contribution is calculated with respect to Eq.4.4 between Patch-based Model and
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Figure 4.8. Area-Precision & Area-Recall Curve on Leopard Images.

Faster R-CNN boxes, where n is the number of boxes obtained with Patch-based training

model.

PatchContj =

∑n
i=1Area(PatchBasedModelBoxi ∩ FasterR− CNNj)∑n

i=1Area(PatchBasedModelBoxi)
(4.4)

PFasterR−CNNj
=
PFasterR−CNNj

+ PatchContj

2
(4.5)

In Eq.4.5, PFasterR−CNN is a list of Faster R-CNN predicted box scores, where j =

1, ..., |PFasterR−CNN |. PatchContj is a contribution factor to Faster R-CNN predicted

boxes. Tests are applied three different confidence threshold scores of Patch-based model,

where scores are 0.25, 0.50, and 0.75 when full range of the heat map is normalized to

[0, 1]. Area-precision & area-recall results of Faster R-CNN and Combined Models are

shown at Fig.4.14, Fig.4.15, Fig.4.16, and Fig.4.17 for bear, elephant, leopard and zebra

classes respectively.

According to area-precision & area-recall results (Fig.4.14, Fig.4.15, Fig.4.16,

and Fig.4.17), Combined model has shown better performance than naive Faster R-CNN

model for all classes, and it has shown less performance than Patch-based Model for

leopard and zebra classes. A conclusion here is that, Patch-based model alone was not

performing well on bear images, but combined model performed well.

By observing area precision & area recall results, we also wanted to check perfor-

mance of Combined and Faster R-CNN Model using with classic precision-recall metric
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Figure 4.9. Area-Precision & Area-Recall Curve on Zebra Images.

(Eq.4.1). Tests are applied three different threshold scores of Patch-based Model where

threshold scores are 0.25, 0.50, and 0.75. Precision-recall results on test set are shown at

Fig.4.18, Fig.4.19, Fig.4.20, and Fig.4.21 respectively. For all classes, positive effect of

Combined Model has been observed. Combined Model (@0.25) outperforms than Faster

R-CNN for all classes.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10. (a) Input Image, (b) Heat Map of Background, (c) Heat Map of Bear
Class, (d) Heat Map of Elephant Class, (e) Heat Map of Leopard Class,
(f) Heat Map of Zebra Class

(a) (b)

(c) (d)

(e) (f)

Figure 4.11. (a) Input Image, (b) Heat Map of Background, (c) Heat Map of Bear
Class, (d) Heat Map of Elephant Class, (e) Heat Map of Leopard Class,
(f) Heat Map of Zebra Class
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12. (a) Input Image, (b) Heat Map of Background, (c) Heat Map of Bear
Class, (d) Heat Map of Elephant Class, (e) Heat Map of Leopard Class,
(f) Heat Map of Zebra Class

(a) (b)

(c) (d)

(e) (f)

Figure 4.13. (a) Input Image, (b) Heat Map of Background, (c) Heat Map of Bear
Class, (d) Heat Map of Elephant Class, (e) Heat Map of Leopard Class,
(f) Heat Map of Zebra Class
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Figure 4.14. Combined Model and Faster R-CNN Area-Precision & Area-Recall Re-
sult on Bear Images.

Figure 4.15. Combined Model and Faster R-CNN Area-Precision & Area-Recall Re-
sult on Elephant Images.

32



Figure 4.16. Combined Model and Faster R-CNN Area-Precision & Area-Recall Re-
sult on Leopard Images.

Figure 4.17. Combined Model and Faster R-CNN Area-Precision & Area-Recall Re-
sult on Zebra Images.
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Figure 4.18. Combined Model and Faster R-CNN Precision & Recall Result on Bear
Images.

Figure 4.19. Combined Model and Faster R-CNN Precision & Recall Result on Ele-
phant Images.
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Figure 4.20. Combined Model and Faster R-CNN Precision & Recall Result on Leop-
ard Images.

Figure 4.21. Combined Model and Faster R-CNN Precision & Recall Result on Zebra
Images.
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CHAPTER 5

CONCLUSIONS

In this work, we propose a Patch-based Training approach for CNNs to localize

some animal species whose bodies have distinctive pattern, such as speckles of leopards,

black-white lines of zebras etc. CNN is trained with patches cropped from image locations

where animals exist. At test time, all image locations are visited in a sliding window

fashion, and a heat-map is generated using the classification scores of the patches. After

a series of morphological operations, heat-maps are converted to bounding box estimates.

We compared Patch-based Training localization performance using two different

metric. First one, and well know, is Precision & Recall metric (Eq.4.1), and second one

is Area-Precision &Area-Recall metric (Eq.4.3). Precision & Recall metric works like a

binary classifier: these is true-positive or false-positive prediction. This metric is not very

appropriate to represent the potential of Patch-based Model. Because at high threshold

scores, Patch-based Model get false-positive prediction due to making prediction with

small boxes even if it makes a high precise localization. To overcome this problem, we

decided to use Area-Precision & Area-Recall metric. Area precision-recall metric works

like an analogue classifier. There is no true-positive or false-positive prediction.

We tested object localization performance of Patch-based Model and Faster R-

CNN on four animal classes, which are bear, elephant, leopard, and zebra classes. We

observed that, on leopard and zebra classes Patch-based Model worked well, on elephant

class it’s performance is above Faster R-CNN, and for bear class it is not good. This is

due to bear and elephant do not have a distinctive body pattern as leopard and zebra do.

However, as shown by experiments Patch-based Model is able to locate the object more

precisely when the detected class is correct and when used in combination with Faster

R-CNN it increases the localization performance of Faster R-CNN. This is even true for

bear and elephant classes.

Another advantage of Patch-based approach is that significantly less number of

images are adequate for training. For instance, 50 zebra images instead of 450 images.

This may become a reason of choice if the available dataset has a limited size.

Currently, we crop patches from test images in a sliding window fashion which
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requires a great amount of time to extract features for all patches (80 seconds). Since

cropped patches overlap each other, running time can be decreased by applying convolu-

tions only on the non-overlapping parts of the image patches.

For future work, Patch-based Method also can be used as a box regressors for

more challenger dataset. Because it makes a high precise localization, however with

small boxes.
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