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Abstract: Camera-traps are motion triggered cameras that are used to observe animals in nature. The number of3

images collected from camera-traps has increased significantly with the widening use of camera-traps thanks to advances4

in digital technology. A great workload is required for wild-life researchers to group and label these images. We propose5

a system to decrease the amount of time spent by the researchers by eliminating useless images from raw camera-trap6

data. These images are too bright, too dark, blurred or they contain no animals. To eliminate bright, dark and blurred7

images we employ techniques based on image histograms and Fast Fourier Transform. To eliminate the images without8

animals, we propose a system combining convolutional neural networks and background subtraction. We experimentally9

show that the proposed approach keeps 99% of photos with animals while eliminating more than 50% of photos without10

animals. We also present a software prototype that employs developed algorithms to eliminate useless images.11

Key words: Camera-trap, Image Processing, Computer Vision, Object Detection, Background Subtraction, Convolu-12

tional Neural Networks, Deep Learning.13

1. Introduction14

Camera-traps are motion triggered cameras which are placed in the pathways of animals for the surveillance of15

the wild-life. Example camera-trap images are given in Figure 1. A properly working camera-trap may capture16

one thousand images in a month. Some photos of this large collection can be too dark, too bright, or blurred17

due to improper functioning of the camera. Also a considerable amount of captured photos do not contain any18

animals. Since researchers aim to observe animals, sort of images described above are considered as ’useless’.19

Examination of all the images gathered from a high number of cameras and deciding if there exists an animal20

in the image is a task that consumes a considerable amount of time for wild-life researchers.21

Figure 1: Examples of images obtained from camera-traps.
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Figure 2: Pipeline of elimination process on raw camera-trap dataset.

The goal in our study is to automatically eliminate useless images from raw datasets of camera-traps,1

thus reduce the number of images to be visually examined by human experts. In our approach, blurred, too2

bright and too dark images are eliminated first (Figure 2). We propose novel approaches to discriminate blurred3

images from partially blurred ones and to discriminate too dark and too bright images from acceptable dark and4

bright ones. Next, the goal is to eliminate images without animals. In our work, two methods were evaluated5

to detect animals in camera-trap images, one is based on background subtraction (since camera-traps collect6

images with varying time intervals on the same scene) and the other one uses convolutional neural networks7

(CNN). We also investigated how to combine these two methods to obtain the best results. We achieved a higher8

animal/ non-animal image classification accuracy compared to the previous works. Moreover, we developed a9

software prototype that includes the image elimination modules mentioned above.10

In Section 2, we summarize the related work in literature and explain our contributions in detail. We11

introduce our methods on eliminating blurred, too bright and too dark images in Section 3. Section 4 is12

devoted to describe the methods of object detection in order to eliminate images without animals. We present13

experiment results in Section 5 and give brief information about the prototype software in Section 6. Lastly,14

our conclusions are given in Section 7.15

2. Related Work and Our Contributions16

Studies on automatic animal detection and classification from images and videos taken in nature are relatively17

new. In [1], a video dataset was formed with sub-aqua cameras. Fish classification was performed on the regions18

obtained by separating moving objects from the background. A large feature set was used including color, shape,19

texture properties and moment invariants. A study dedicated to decrease the workload of wild-life researchers20

was conducted by Song and Xu [2]. In this work, birds were detected in videos and tracked with Kalman filter21

aiming to show the experts only the videos with a high probability of containing birds. With a similar goal,22

Weinstein [3] proposed a system where moving objects are detected from the videos that are captured in nature23

and the relevant frames are offered to the user. In [4], rather than camera-trap images, photographs from a24

museum database are used for species classification.25

A species detection study on an actual camera-trap collection was first conducted by Yu et al. [5]. A26

dataset with 7000 images and 18 species was used. SIFT and LBP descriptors were combined into a feature27

vector and classified with SVM resulting in a classification accuracy of 82%. Chen et al. [6] was the first28

to use convolutional neural networks (CNN) to classify species from camera-trap images, using the dataset of29

University of Missouri that includes 20 species. Although the potential of CNN is a lot higher, because this study30

took place in 2014, 38% accuracy was obtained. In 2017, Gomez-Villa et al. [7] tested different CNN structures31

with a much bigger dataset (Snapshot Serengeti, 26 species, 780.000 images) and reported an accuracy of 60%.32

Another study on Serengeti dataset was made by Norouzzadeh et al. [8] where CNN models were trained from33

scratch. Classification accuracy increased up to 94% with the best model when the highest probability class34
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is considered (top-1 accuracy). In this study, two class (animal and non-animal) image classification is also1

performed and 96.8% accuracy was reported for the best performing model. Another study [9] which used2

a different but again large camera-trap dataset reported 90.4% accuracy for species classification and 96.6%3

accuracy for animal/non-animal classification.4

We do not aim species classification in this work, however our results for eliminating images without5

animals can be compared with the animal/non-animal classification results in literature. Previous studies that6

obtained 96% accuracy on this task [8, 9] were held with large and mixed collections of camera-trap images.7

Also those collections were cleaned such that no unusable (too blurred, too bright etc.) photos or unrecognizable8

animals remain. Our dataset is more challenging in the way that we handle raw image folders (a folder per9

camera-trap) and we do not mix train and test folders which suits to the real-life scenario where test images10

come from new camera-trap locations. Under these realistic conditions, a state-of-the-art image classification11

CNN (ResNet) reached only 80.7% accuracy on animal/non-animal classification. Our first contribution is that12

we increased it to 90.2% by training an object detector CNN (Faster R-CNN) to find animals and eliminate13

the images without any detected animals. We also investigated to use of suggested practices such as transfer14

learning, data augmentation and ensemble of networks to obtain best results.15

Our second contribution is that we adapt a background subtraction technique to eliminate camera-trap16

images without animals for the first time. We also propose an approach combining CNN and background17

subtraction methods together. In our experiments, this combined method achieved 99.1% rate of keeping18

photos with animals while eliminating more than 50% of photos without animals.19

Third, we have used the common technique of blur detection in frequency domain with a novel strategy20

of dividing the processed image into sub-images. This produced considerably better results in discriminating21

usable partially blurred images from completely blurred ones.22

Our novelty is to discover the best-performing combinations of the related methods and to integrate them23

for the real world problem of eliminating useless images raw camera-trap datasets. Thus, we are the first to24

present what could be expected from a complete system under realistic conditions. Moreover, we developed a25

software prototype including these elimination modules. There are a few data management software proposed26

to manage camera-trap folders and label images [10–12]. However, since no automatic elimination is performed,27

these software do not reduce the number of images to be visually checked by researchers.28

3. Blurred, Bright and Dark Image Elimination29

3.1. Blurred Image Elimination30

Many approaches on blur detection were proposed in the last 25 years. Pavlovic and Tekalp [13] proposed a31

method that uses maximum likelihood on spatial space to detect blur. Narvekar and Karam [14] put together32

a cumulative probability metric, whereas Tong et al. [15] used wavelet transformation based on edge shapes33

and edge sharpness. Fourier Transform is another method used commonly on blur detection. Low frequency34

coefficients are represented close to the center of the centered spectrum which is obtained by Fourier Transform.35

Since the intensity differences between neighboring pixels of a blurred image is too low, a blurred image must36

produce a spectrum with very low frequencies (accumulation in the center). Figure 3 shows two images that37

are labeled as blurred and clear and their corresponding Fourier spectra.38

Dosselman and Yang [16] place rings with varying radii on the Fourier spectrum’s center and calculate39

the responsiveness of areas between rings. The sum of pixels values between each ring is recorded and used to40
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form a cumulative distribution function (CDF) shown in Figure 3 (last column). The number of rings in this1

example is 75. For each ring, values from the outermost ring up to that ring are summed up and divided by2

the total sum of 75 rings (i.e. all spectrum). That is why we reach CDF value of 1.0 when the ring number3

is 1. Also, a hypothetical line is shown in the figure, representing an image with equal frequency distribution.4

Detection of blur using CDF is as follows. For every ring, the hypothetical line’s value for that ring is subtracted5

from the ring’s CDF value. The results are summed up and divided to the summation of the hypothetical line’s6

values. The obtained value is assigned as φ . The images with lower φ than a threshold are labeled as blur.7

(a)

(b)

Figure 3: (a) From left-to-right: A blurred image, its Fourier transform and computed cumulative distribution
function (CDF) with the algorithm given in [16]. (b) From left-to-right: A clear image, its Fourier transform
and computed CDF.

Figure 4: Partially blurred images in raw camera-trap dataset

The algorithm described above [16] is very sensitive to blurriness and does not enable us to determine a8

threshold that will also identify partially blurred images. These images are the ones that contain clear parts.9

We do not want to eliminate these partially blurred images since animals can be identified in the clear regions.10
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(a) (b)

(c) (d)

Figure 5: Examples of too dark (a), dark but useful (b), too bright (c) and bright but useful (d) images.

Examples of partially blurred images can be seen in Figure 4. We propose an approach based on [16] and1

compute blurriness in different parts of images. If only a few parts of the image are blurred, it is not eliminated.2

We divide the images into a fixed number of sub-images and for each sub-image we perform blur detection. The3

number of blurred sub-images is divided to the total number of sub-images to obtain the blur percentage of an4

image. In our experiments, we divided images into 16 equal sub-images and set the blur percentage threshold as5

0.75, meaning if an image has 12 or more sub-images that is identified as blur, that image is labeled as blurred.6

For sub-images, the number of rings was decreased to 35 from 75 and the threshold for φ value was set to -0.03.7

3.2. Bright and Dark Image Elimination8

To eliminate too bright and too dark photos, a histogram based analysis is performed to estimate the darkness9

and brightness levels. To decrease the false negative results, partial dark and partial bright images are not10

specified as useless. Examples of too dark, too bright and useful (i.e. acceptable) images can be seen in Figure11

5. Equation 1 shows dark pixel ratio (pd ) and bright pixel ratio (pb ) where hist(i) denotes the number of12

pixels with intensity value i . Ratios are in [0,1] range. We observed that taking the square is more effective13

since it trivializes small values. These equations assume pixels with intensity value ≤20 are dark and pixels14

with intensity value ≥220 are bright, where intensity range is [0,255]. These are empirical values based on our15

observations on the dataset. We tested the proposed formula for threshold values from 128 to 255 for bright16

images and from 0 to 128 for dark images and chose the best performing values. Thresholds on pd and pb17

were set as 0.94 and 0.84 respectively. Again these threshold values are outcomes of an exhaustive search where18

target range is [0.5,1] for both bright and dark image testing. Images, whose darkness or brightness is higher19

than these thresholds, are eliminated.20

pd = (

∑20
i=0 hist(i)∑255
i=0 hist(i)

)2 pb = (

∑255
i=220 hist(i)∑255
i=0 hist(i)

)2 (1)

5
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(a) (b)

Figure 6: (a) Faster R-CNN [20] comprises two separate networks, Region Proposal Network (RPN) and
Classifier Network, sharing the same backbone CNN. (b) RPN uses sliding window approach on the last
convolutional layer to produce region proposals.

4. Detecting Images with Animals1

4.1. Animal Detection with Deep Learning2

Convolutional Neural Networks (CNN), especially after AlexNet [17] won the ILSVRC [18] competition of image3

classification in 2012, have been effectively used on many tasks of computer vision, including object detection.4

There are quite a few CNN approaches developed for object detection. Let us quickly review some of those.5

OverFeat [19] is one of the earliest ones. In OverFeat, to detect object location, CNN with a classifier and6

a regressor head is trained. Objects are searched in the image in a sliding window fashion. In Faster R-CNN7

[20], object proposals are made through a Region Proposal Network (RPN) which shares last convolutional layer8

of CNN with a classifier network (Figure 6a). Then the proposed regions are classified.9

YOLO [21] and SSD [22] use a different approach to process the image. They divide the image into10

regions and train a single neural network that predicts bounding boxes and class probabilities for each region.11

With this increased speed, recently, YOLO and SSD reached the detection accuracy of Faster R-CNN while12

processing real-time.13

We chose Faster R-CNN for our object detection module. Main reasons of this choice are its proven14

effectiveness on different datasets and the abundance of documentation and source codes. As mentioned above,15

Faster R-CNN consists of two separate networks, sharing the same backbone CNN which extracts features.16

RPN uses sliding window approach on the last convolutional layer of the backbone CNN and at each position17

it determines 9 anchor boxes (3 different scales and 3 different sizes). For each anchor box, an objectness18

score is produced with a classifier head and 4 offset values are produced with a regressor head to make the19

proposal boxes more precise (Figure 6b). This usually totals up to 20000 anchor boxes with objectness scores20

for each image. Then a threshold is applied to eliminate low-score ones, and non-maximum suppression is used21

to eliminate overlapping boxes. To further decrease the number, top 300 anchor boxes with highest scores are22

selected to feed the classifier network. Classifier network classify these proposal regions using the corresponding23

areas on the last convolutional layer of the backbone CNN.24

Since we do not aim species classification [8] or perfectly localizing an animal within the image [24], we25
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kept an image if any animal is detected in it, and eliminated otherwise. Faster R-CNN is trained as a two-class1

classifier where all animals constitute the samples of positive training set. This approach is also a good choice2

for the situations where one can encounter animals which do not exist in the training set.3

We also need to clarify why we employed an object detector instead of training an image classifier for4

animal/non-animal image classification. The reason is that general purpose image classifiers such as ResNet5

[23] does not perform well enough for our dataset obtained from Ministry of Forest and Water Affairs. As the6

details will be given in Section 5.2, we used separate cameras in training and test set which suits to the real-life7

scenario where test images come from new camera-trap locations. However, in studies in literature [6–8] same8

camera-traps are used for training and test, thus the same scenes exist in both training and test sets. The9

latter will be referred as mixed dataset. When a mixed dataset is used, an effective image classifier exploits10

background scene information to discriminate between animal and non-animal images. However, when new11

scenes come, its accuracy drops since it does not perform well for the scenes it did not see before. Table 1 shows12

the comparison of performance between state-of-the-art classification network ResNet [23] and Faster R-CNN13

[20] on separate and mixed versions of the same dataset. While ResNet accuracy drops significantly on separate14

dataset, drop in Faster R-CNN is limited since it is trained to find animals in images.15

Table 1: ResNet [23] and Faster R-CNN [20] accuracies for animal/non-animal image classification.

Faster R-CNN Accuracy ResNet Accuracy
Mixed Dataset 94.3 % 95.6 %
Separate Dataset 90.2 % 80.7 %

4.2. Animal Detection with Background Subtraction16

Background subtraction is a common approach to detect the moving objects in real-time videos. We decided to17

evaluate this approach since the camera-trap image sequences show strong resemblance to videos. Camera-traps18

collect images with varying time intervals on the same scene, resulting in a long image sequence with a single19

background.20

A comprehensive review of background subtraction algorithms exists in [25]. We preferred to use Gaussian21

Mixture Model due to its compatibility with bi-modal backgrounds. In this method, each pixel is modeled by22

a mixture of K Gaussian distributions (K is a small number from 3 to 5). Different Gaussians are assumed to23

represent different colors. The probability that a pixel has a value of x can be written as24

p(x) =

K∑
j=1

wjN (x, θj) (2)

where N (x, θj) denotes the probability of x in the jth Gaussian component which has parameters θj . Here,25

wj is the weight parameter of jth Gaussian component, representing the time proportion that color stays in26

the scene.27

Static single-color objects tend to form tight clusters in the color space while moving ones form wider28

clusters due to different reflecting surfaces during the movement. Thus, wk/σk is used as the fitness value to29

represent staying long and more tight. Higher fitness value refers to having higher probability to be a background30

component. The K distributions are ordered based on the fitness value and the first B distributions are used31

7
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(a)

(b)

Figure 7: A successful (a) and a failed (b) example of detecting animals with background subtraction. Images
on the left are two consecutive images in raw camera-trap dataset. Since the difference between images is too
much, the background subtraction result of second image implies the image has animal while there is not.

as a model of the background of the scene where B is estimated as1

B = argmin
b

(

b∑
j=1

wj > T ) (3)

where T is the threshold for the minimum acceptable fraction of the background model. If a pixel is more than2

2.5σ away from any of B distributions, it is marked as a foreground pixel. To adapt to changes in illumination,3

an update scheme is applied such that every new pixel value is checked against existing model components4

in order of fitness. The first matched model component is updated. If no match is found, a new Gaussian5

component is added. For better adaptation to the scene, in [26], this method was improved in a way that not6

only the parameters but also the number of components of the mixture is constantly adapted for each pixel.7

The images obtained from background subtraction goes through a series of morphological operations.8

After this, connected component analysis is applied to images to obtain the areas of the foreground objects.9

Objects whose area is higher than a threshold are defined as foreground objects. Figure 7a shows a successful10

example of a component defined as object.11

Failures usually occur when lighting substantially changes between two consecutive images (an example12

is given in Figure 7b). Since camera-trap image sequence is collected from the same camera-trap during varying13

time intervals, there are cases where the time interval between two images is low but lighting substantially14

changes or where the time interval between two images is high but the lighting and background on these images15

looks identical (two images captured on same hours of different days). It is necessary to minimize the differences16

between frames to achieve good results. For this purpose, we propose an algorithm to group images with the17

same background.18

8
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Figure 8: Clusters that show up after sorting the images. Starting from top-left, 1st, 5th, 13th, and 25th images
are starting points of new clusters.

First, we create a similarity metric between two images, by comparing images pixel-by-pixel. If the1

absolute difference of a pixel between two images is higher than an empirical threshold, we count that pixel as2

’changed’. The percentage of the changed pixels constitute our similarity metric. A low percentage indicates3

high similarity between two images. After we find the most similar image to the first image on the image4

series, we put it right after the first image in series and then we start to search the most similar image to the5

second image in series and so on. We also cluster sorted images from where the lighting changes drastically6

(low similarity between consecutive images) on image series. We observe that images captured at night usually7

grouped as one cluster while images captured during daytime usually clustered into several groups. An example8

clustering result can be seen in Figure 8. Later, we apply background subtraction to each cluster separately.9

To put it differently, the background model that is learned is forgotten before processing a new cluster. The10

flow of our background subtraction approach is given in Figure 9.11

The proposed sorting algorithm improves the results since it decreases the number of the failures,12

especially the ones similar to Figure 7b. When the images are not sorted, a few consecutive images share13

the same background (illumination) and every substantial change in lighting results in a failure. However, after14

sorting, many more images benefit from the same background (such as images taken at night or images of the15

same time of the day but taken at different days). Thus, failed cases occur less often.16

9
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Figure 9: Steps of the proposed pre-processing for background subtraction approach.

Table 2: Blurred image classification results

Actual Classes # of images
Proposed Approach Original Approach [16]

Blurred Clear Accuracy Blurred Clear Accuracy
Blurred 186 175 11 94.1% 182 4 97.8%
Clear 325 0 325 100% 1 324 99.9%
Partially Blurred 181 20 161 88.9% 60 121 66.8%
TOTAL 692 95.5% 90.6%

5. Experiments and Results1

Our raw camera-trap dataset consists of nearly 40000 camera-trap images provided by the Ministry of Forest and2

Water Affairs, Republic of Turkey. These images had been collected from different cameras and mostly stored3

such that each folder contains images from a single camera (one background scene). Firstly, we manually scanned4

the images and labeled too dark, too bright and blurred ones. Next, we added bounding-box annotations on5

more than 2500 images with animals in Pascal VOC annotation format to be used for experiments of detecting6

images with animals. One thing we paid attention during the creation of annotated dataset is to ensure7

variation in terms of scenes, lighting conditions and animals. These images and their annotations are available8

on http://cvrg.iyte.edu.tr/.9

5.1. Experiments on Eliminating Blurred, Too Dark and Too Bright Images10

We prepared 692 images for blur detection experiments. 186 of them are blurred, 181 of them are partially11

blurred while the remaining 325 images are clear. Table 2 shows the classification results of both the original12

method [16] and proposed approach explained in Section 3.1. With the proposed approach, out of 186 blurred13

images, 175 are labeled as blurred, achieving 94.1% accuracy. This ratio of elimination is good since it saves14

human time. All of the clear images are remained, and for partially blurred images, only 20 out of 181 images15

are incorrectly labeled as blurred, achieving 88.9% accuracy. As seen in the table, this is much better than the16

66.8% accuracy of original approach [16]. As a conclusion, the proposed approach of dividing the image into17

sub-images before processing eliminated two-thirds of incorrect blurred detections and it is important because18

these images will not be visually checked by experts in this scenario.19

In Section 3.2, we explained our method of eliminating too dark and too bright images. We prepared20

1017 too dark, 7 too bright (they are rare) and 2250 useful images for the experiments. Set of useful images21

contains many dark and bright images close to the borderline. The success of classification can be seen in Table22

3. Only 11 dark images are incorrectly classified, no errors made on bright and useful images. Thus, this module23

is more effective than the blur elimination since it eliminates 99% of useless photos with no false-negatives.24

10
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Table 3: Confusion matrix for detection of too bright and too dark images

Classes
Predicted Classes

Dark Bright Useful
Dark 1006 0 11
Bright 0 7 0
Useful 0 0 2250

Table 4: Datasets used for the object detection experiments

Datasets # of Train Images # of Test Images

Ministry of FWA
DS-1

958
707

DS-2 1248
Missouri University DS-3 871 1474

5.2. Experiments on Eliminating Non-animal Images1

We present the experiment results in three subsections. Results of deep learning methods are given in Section2

5.2.1, results of background subtraction method are given in Section 5.2.2 and finally Section 5.2.3 presents the3

performance of combining these two methods.4

All datasets used in Section 5.2 are shown in Table 4. In Ministry of FWA dataset, we have 958 images in5

our training set and 1955 images in our test set. The cameras in training and test sets are separate. We formed6

two separate test sets for Ministry of FWA images. One set (DS-1) contains low number of animals while the7

other test set (DS-2) has high number of animals (cf. Table 4). We observe that any camera-trap folder follows8

one of these two patterns and we aimed to analyze results separately.9

In addition to Ministry of FWA dataset, we use a camera-trap dataset (DS-3) provided by University10

of Missouri [6]. We used DS-3 only for Section 5.2.1 since this dataset is not in raw folders and background11

subtraction method cannot be applied.12

5.2.1. Experiments on Eliminating Non-animal Images with Deep Learning13

As mentioned in Section 4 we trained a Faster R-CNN model. All animals are regarded as one class during14

CNN training in accordance with our goal of eliminating images without animals and remaining the ones that15

have animals regardless of their species.16

During training we make use of transfer learning. We use pretrained weights on ImageNet dataset for the17

backbone architecture which is VGG16. We initialize weights of the fully connected layers of RPN and classifier18

network with zero mean and a standard deviation of 0.01. At test time, we keep an image if an animal is detected19

in it. Success of the system is measured with two criteria. One is the elimination rate of images without animals20

and the other is the remain rate of images with animals. We desire both rates to be high. Firstly, we trained21

and tested Faster R-CNN using Ministry of FWA images (DS-1 and DS-2 in Table 4). Results are shown in22

Figure 10 where eliminated image and remained image accuracies are depicted separately for different score23

thresholds. An increased threshold requires Faster R-CNN object boxes have higher confidence scores not to24

eliminate an image. It results in higher elimination accuracy but remained image accuracy drops since it starts25

to miss actual animals. On the left side (threshold≤50) accuracies do not change since no Faster R-CNN object26

box has probability less than 0.5 (otherwise box would have been classified as background). Table 5 shows the27

detailed result of the experiment when threshold is kept at 0.5. On the average of two datasets, average of28

11
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Figure 10: Results on deep learning experiments with different score thresholds.

Table 5: Percentages of eliminated and remained images with deep learning

Dataset
# of images Success Rate

Animal Empty Eliminated Remained Accuracy
DS-1 76 631 90.8% 51.3% 86.4%
DS-2 941 307 86.9% 94.1% 92.3%
TOTAL 1015 938 89.5% 91.1% 90.2%

eliminated and remained image accuracies is 90.2%.1

We also tested our model trained with Ministry of FWA on Missouri University test set (DS-3). The2

results are shown in Table 6. Accuracy shows a decline, pointing out that the generalization capacity of a model3

trained with a camera-trap dataset from a single source is limited. This result is in conformance with [27] where4

authors trained a CNN with Snapshot Serengeti dataset and tested the model with an ’out-of-distribution’5

dataset from Canada. In their study, the species classification accuracy decreased to 82% from 97%.6

Another experiment we perform was to investigate the performance of ensemble of trained neural net-7

works. Ensemble of NNs are quite popular with CNNs in different domains [28, 29]. For this purpose, we8

trained four separate networks to be used as the classifier of Faster R-CNN model (Figure 6) each use different9

and random 80% portions of the training set of Ministry of FWA. They share the same RPN. At test time, we10

ensemble them by unweighted averaging. In other words, for each window proposed by RPN, the scores of four11

classifiers are averaged.12

Table 6: Percentages of eliminated and remained images on DS-3 with CNN trained with DS-1 & DS-2

Dataset
# of images Success Rate

Animal Empty Eliminated Remained Accuracy
DS-3 886 588 68.3% 81.9% 76.4%

12
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Table 7: Comparison between Ensemble of Networks and Baseline Learner using Ministry of FWA dataset

Methods
# of images Success Rate

Animal Empty Eliminated Remained Accuracy
Ensemble of Networks

1015 938
89.5% 92.1% 90.7%

Baseline Learner 89.4% 91.0% 90.2%

(a) (b)

(c) (d)

Figure 11: Some examples of correct detections (a,b), missed animals (c) and false-positive detections (d) with
deep learning method.

Test set consisting of both DS-1 and DS-2. Results are shown in Table 7 where baseline learner refers to1

the single Faster R-CNN that uses 100% of training data. When we compare baseline learner and ensemble of2

networks, we observe a small improvement in total accuracy as expected.3

5.2.2. Experiments on Eliminating Non-animal Images with Background Subtraction4

Although deep learning gives very good elimination and remained percentages (both around 90%), a few5

problems were noticed when we examined the false results. In addition to the successful detections (examples6

shown in Figures 11a and 11b), some animals were missed due to the similarity of their texture with the7

background (Figure 11c), whereas some large stones are mistaken as animals (Figure 11d). These problems can8

be fixed with background subtraction since it will detect animals that was not previously there and it will not9

detect rocks that stay in every frame.10

As explained in Section 4.2, we sort and cluster images with the same background, we apply background11

13
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Table 8: Percentages of eliminated and remained images with background subtraction approach

Datasets
# of images Success Rate

Animal Empty Eliminated Remained Accuracy
DS-1 76 631 60.6% 75% 62.0%
DS-2 941 307 46.9% 91.9% 80.8%
TOTAL 1017 938 56.1% 90.8% 74.0%

Table 9: Percentages of eliminated and remained images with combined method

Datasets
# of images Success Rate

Animal Empty Eliminated Remained Accuracy
DS-1 76 631 60.0% 89.4% 63.1%
DS-2 941 307 43.3% 99.9% 85.9%
TOTAL 1017 938 54.5% 99.1% 77.6%

subtraction to each cluster of images on its own. The experiment results on DS-1 and DS-2 are given in Table1

8. Our first observation is that, for DS-1, remained rate increased to 75% (cf. Table 5) catching most of2

the animals that are missed by deep learning method. On the other hand, the eliminated rate is lower than3

that of deep learning method (cf. Table 5). By examining mistakes, we observed that although some false-4

positives such as given in Figure 11d do not occur with background subtraction, other false-positives occur5

due to sudden changes of scene illumination. In total, the number of false-positives increase in background6

subtraction method, causing low eliminated rate. We also observed that remained images (true-positives) in7

both methods are partially different from each other which motivated us to perform experiments in Section8

5.2.3.9

5.2.3. Experiments on Eliminating Non-animal Images with Combined Method10

With the observation that the two methods generally fail on different images (explained in Section 5.2.2),11

we designed an experiment where the decisions of both methods are combined. To eliminate an image, both12

methods must vote so. Otherwise, it is enough for either method to vote to remain an image in order to remain13

an image. This caused a drop on eliminated image accuracy and reduced it to 54.5% but the remained image14

accuracy reached %99.1. Table 9 shows the results of this experiment. When we examined the missed 0.9%, we15

noticed that missed animals also are seen in neighbor images that are remained (camera-traps keeps capturing16

until there is no movement in scene). Thus, we can say that around 500 images without animals were eliminated17

with no individual animal was missed.18

6. Software19

A prototype software was developed to be able to apply the proposed elimination algorithms on raw camera-trap20

data. Potential users of this software is wild-life researchers. A user is able to choose what type of images to21

be eliminated and which method to use for the elimination (when multiple methods available). Software tags22

images according to algorithm results and lets the user go through the images with selected tags. In addition,23

software contains must-features of any image management software such as choosing a folder or any number24

of images from a folder, manually tagging one or multiple images and filtering based on tags. A screenshot25

showing the graphical user interface of our prototype software can be seen in Figure 12.26

14
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Figure 12: Screenshot from our prototype software. There is an explorer window on the left where user can
select individual camera-traps. Images are shown in the middle panel where user can select one or multiple
images. Right panel contains buttons for manual tagging and algorithm tagging (elimination methods). Also
windows exist to view added tags.

7. Conclusions1

Identifying animals in large sets of camera-trap images consumes a considerable amount of time for wild-life2

researchers. In Snapshot Serengeti project, annotating images collected in six months took more than two3

months by a group of 28,000 registered and 40,000 unregistered volunteers [30]. With the aim of reducing the4

number of camera-trap images to be visually examined by wildlife researchers, we developed different modules5

of image elimination. Blurred image elimination module worked with 94% accuracy with a cost of eliminating6

11% of partially blurred photos. Too bright and too dark image elimination rate is 99% without eliminating7

any useful image.8

Regarding animal/non-animal image classification, we employed an object detector CNN and kept images9

if any animal is found in images. Our approach reached an accuracy of 90.2%. We showed with experiments that10

this is well above the performance of state-of-the-art image classifier CNNs (which were used in previous work11

on camera-traps). Moreover our combined method achieved 99.1% remained image accuracy while obtaining12

54.5% eliminated image accuracy. Overall accuracy seems to be low, but high remaining rate is preferred because13

penalty of a false-negative result is much higher (since that image will not be shown to the expert anymore).14
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