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ABSTRACT

CLASSIFICATION OF MANEUVERS OF VEHICLES IN FRONT FOR
DRIVER ASSISTANCE SYSTEMS

Predicting vehicle maneuvers is a critical task for developing autonomous driving.
These maneuvers have been identified as leading causes of fatal accidents, underscoring the
need for robust and reliable detection systems. This thesis addresses this critical issue by
developing and evaluating novel methodologies for classifying maneuvers, especially lane
change and cut-in maneuvers in front of the vehicle. Two specific methods are proposed in
this thesis work, and their effectiveness is evaluated on two datasets: the Prevention Lane
Change Prediction dataset and the BDD-100K Cut-in/Lane-pass Classification Subset.

The first method is a model that utilizes features extracted from the bounding boxes
of the target vehicle, feeding them into a single-layer LSTM network for cut-in/lane-pass
classification. The second method involves training a 3-dimensional residual neural net-
work in a self-supervised manner using contrastive video representation learning. For
the self-supervised training phase, a novel scene representation is proposed to highlight
vehicle motions. Afterward, the same model is fine-tuned using labeled video data. Lastly,
an ensemble learning approach is introduced, which combines the predictive capabilities
of the proposed LSTM-based and self-supervised contrastive video representation learn-
ing models, leveraging the strengths of both methods to enhance the overall maneuver
classification performance.

The proposed methods made significant contributions to the field. The LSTM-
based model achieved high classification accuracies compared to other studies in the
literature. The self-supervised video representation learning model represents the first
application of contrastive learning in maneuver classification. The ensemble learning ap-
proach has shown a significant improvement in the performance of the maneuver detection
system.
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ÖZET

SÜRÜCÜ DESTEK SİSTEMLERİ İÇİN ÖNDEKİ ARAÇLARIN
MANEVRALARININ SINIFLANDIRILMASI

Araç manevralarının otonom sürüşün geliştirilmesi için kritik bir görevdir. Bu
manevralar ölümcül kazaların önde gelen nedenlerindendir, bu yüksek başarılı ve güve-
nilir tespit sistemlerine duyulan ihtiyacın altını çizmektedir. Tez kapsamında araç içi
kamera verilerini kullanarak aracın önünde meydana gelen şerit değiştirme ve ön kesme
manevralarını sınıflandırmak için yeni metodolojiler önerilmiştir ve bunların etkinliği iki
veri kümesi üzerinde değerlendirilmiştir: "Prevention" Şerit Değiştirme Tahmini veri seti
ve "BDD-100K" Ön Kesme / Şerit Paralel Geçme Sınıflandırma veri seti.

İlk yöntem olan LSTM tabanlı yöntem, hedef aracın sınırlayıcı kutularından
çıkarılan özellikleri kullanan ve bunları ön kesme/şerit paralel geçme sınıflandırması için
tek katmanlı bir LSTM ağına besleyen bir modeldir. İkinci yöntem, araç manevralarını
içeren video görüntüleri üzerinde "contrastive video representation learning (CVRL)"
kullanarak 3-boyutlu bir artık sinir ağını kendi kendine denetimli bir şekilde eğitmeyi
içerir. Bu yöntem için, araç hareketlerini vurgulamak üzere yeni bir sahne temsili öner-
ilmiştir. Ardından, etiketli video verileri kullanılarak aynı modele ince ayar yapılır. Bu
yöntem, şerit değişikliği algılama ve ön kesme manevrası algılama görevleri üzerinde
değerlendirilmiştir. Son olarak, önerilen LSTM ve CVRL modellerinin tahmin yetenek-
lerini birleştiren ve şerit değişikliği manevra algılama sisteminin genel performansını
artırmak için her iki yöntemin güçlü yönlerinden yararlanan bir topluluk öğrenme yak-
laşımı tanıtılmıştır.

LSTM tabanlı model, basitliğine rağmen literatürdeki diğer çalışmalara kıyasla
yüksek sınıflandırma doğrulukları elde etmiştir. Kendi kendine denetimli video temsili
öğrenme modeli, manevra sınıflandırmasında "contrastive" öğrenmenin ilk uygulamasını
temsil etmektedir. LSTM tabanlı ve CVRL modellerini entegre eden topluluk öğrenme
yaklaşımı, manevra tespit sisteminin performansında önemli bir gelişme göstererek çoklu
öğrenme algoritmalarından yararlanma potansiyelini ortaya koymuştur.
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CHAPTER 1

INTRODUCTION

Driver assistance systems (DAS) are a group of hardware and software technologies
that assist drivers while driving, parking, and even not using the vehicle with statistical
insights. They use sensors like cameras, radars, and LiDARs to detect nearby obstacles or
driver errors and respond accordingly. As the automotive industry evolved, DAS started
to be defined as Advanced Driver Assistance Systems (ADAS). ADAS are designed to
improve safety and reduce the number of accidents caused by human error. They can also
help drivers to be more aware of their surroundings and to drive more safely. In the last
twenty years, ADAS features developed to enable various levels of autonomous driving,
depending on the features installed in the car. Some of the most common ADAS features
include:

• Adaptive cruise control: An automated system designed to regulate a vehicle’s
speed, maintaining a safe following distance from the vehicle positioned ahead.

• Automatic emergency braking: A system equipped with the capability to automati-
cally engage the brakes if a pending collision with another vehicle or an unidentified
object is detected.

• Blind spot monitoring: A system that utilizes sensors, such as radars, to identify
vehicles within the driver’s blind spots, subsequently alerting the driver with either
visual or audible warnings.

• Collision avoidance system (a.k.a. pre-crash system): A system that employs radar
and camera sensors to preemptively discern the environment’s condition and respond
appropriately. This could involve sounding an alarm, tightening the passengers’ seat
belts, closing the sunroof, or elevating either side of the vehicle.

• Lane departure warning: This system employs cameras to ascertain whether the
vehicle is on the verge of drifting from its lane, alerting the driver with either visual
or audible warnings in such instances.

• Park assist: A system that is equipped with the ability to park the vehicle automati-
cally in both parallel and perpendicular parking spaces.

ADAS are becoming increasingly common in new cars. Many automakers are
now offering ADAS as standard equipment on their vehicles. Governments have even
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mandated some ADAS features on new vehicles in some countries. As ADAS technology
develops, it will likely play an even more significant role in improving road safety and
creating autonomous vehicles.

Recognizing the expanding role of ADAS in enhancing road safety and paving the
way for autonomous vehicles, The Society of Automotive Engineers (SAE) has proposed
six distinctive levels based on the extent of automation in ADAS (SAEJ3016 (2021)). Level
0 represents a stage where the driver is in complete control of the vehicle. ADAS merely
provide informative cues for the driver to interpret and act upon. Examples of ADAS
belonging to Level 0 include parking sensors, surround-view, traffic sign recognition, lane
departure warning, night vision, blind spot information system, rear-cross traffic alert, and
forward-collision warning. In both Levels 1 and 2, the majority of decision-making rests
with the driver. The divergent feature is that Level 1 ADAS can seize control over a single
function, whereas Level 2 systems can supervise multiple functions, thereby providing
support to the driver. Features such as Adaptive cruise control, emergency brake assist,
automatic emergency braking, lane keeping, and lane centering are examples of Level 1
ADAS features. On the other hand, highway assist, autonomous obstacle avoidance, and
autonomous parking are considered Level 2. From Level 3 onwards, the degree of vehicle
control incrementally escalates, topping in Level 5, where the vehicle demonstrates full
autonomy. Some of these systems, however, are yet to be fully integrated into commercial
vehicles. For instance, highway chauffeur (a Level 3 system) and automated valet parking
(a Level 4 system) were not in widespread commercial use as of 2019 (Galvani (2019)).
The levels can be intuitively conceptualized as: Level 0 - no automation; Level 1 - hands-
on/shared control; Level 2 - hands-off; Level 3 - eyes-off; Level 4 - mind-off, and Level 5
- steering wheel optional. Figure 1.1. can be examined for a more detailed explanation of
SAE Automation Levels.

As we comprehend the stages of automation defined by the Society of Automotive
Engineers, we recognize the vital role of ADAS, not just in providing assistance but also
in ensuring safety. However, as we progress from level 0 to level 5 automation, the
complexity of vehicle safety mechanisms increases largely.

This complexity has started to diminish with the advent of technological advance-
ments in radar, LiDAR, and camera-based sensing systems. The evolution of imaging
technology has been remarkable, with cameras becoming more affordable, compact, and
high-quality. Simultaneously, there has been a significant surge in computing power with
the advent of platforms designed for parallel processing, such as multi-core processing
and graphical processing units (GPUs). These advancements have paved the way for the
real-time implementation of computer vision approaches for vehicle detection, tracking,
and maneuver analysis.

The rapid progress in camera sensing and computational technologies has produced
extensive research in vehicle detection using monocular vision, stereo vision, and sensor
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Figure 1.1. Detailed explanation of SAE Levels of Driving Automation (Source:
SAEJ3016 (2021)).

fusion with vision within the autonomous vehicles community (Sivaraman and Trivedi
(2013)). On-road vehicle tracking has also been a major focus of study (Barth and Franke
(2010), Sivaraman and Trivedi (2011)), with many research efforts reporting the ability to
reliably detect and track on-road vehicles in real time over extended periods.

These theoretical, practical, and algorithmic advancements have opened up new
research opportunities that seek a higher level of semantic interpretation of on-road vehicle
behavior. The integration of this spatiotemporal information from vehicle detection and
tracking can be used to identify maneuvers and to learn, model, and classify on-road
behavior.

As depicted in Figure 1.2., vision plays a crucial role in on-road interpretation.
At the most basic level, various motion and appearance cues are used for on-road vehicle
detection. The next level involves associating detected vehicles across frames to enable
vehicle tracking, which measures the dynamics of the motion of detected vehicles. At the
highest level, an aggregate of spatiotemporal features allows for the characterization of
vehicle behavior, recognition of specific maneuvers, behavior classification, and long-term
motion prediction. This emerging area of research includes predicting turning behavior
(Barth and Franke (2010)), predicting lane changes (Kasper et al. (2012)), and modeling
typical on-road behavior (Sivaraman et al. (2011)).
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Figure 1.2. The figure illustrates the hierarchical levels of vision for semantic interpretation
of the on-road environment. At the base level, features such as appearance, motion, and
size are utilized for vehicle detection in images or videos. At the next level, techniques such
as data association, temporal coherence, and filtering are employed for tracking vehicles.
This allows for the reidentification of vehicles, measurement of dynamic parameters, and
estimation of vehicle positions. At the final step of this hierarchy, a combination of
spatiotemporal features is leveraged to learn, model, classify, and predict the maneuvers
of other vehicles on the road. (Source: Sivaraman and Trivedi (2013)).

Having established the importance and role of vision in on-road interpretation,
it’s crucial to delve into specific challenges that arise in the context of ADAS features.
One such challenge that stands out is the detection and analysis of lane change maneuvers,
particularly the cut-in maneuvers, which have been identified as one of the foremost causes
of fatal accidents according to a report published by the U.S. Department of Transportation
National Highway Traffic Safety Administration in 2021 (III (2019)). The report indicates
that in the USA during 2020, %6.8 of fatal crashes were caused by the failure to yield,
while failure to change to a different lane caused %6.2. Therefore, research in detecting
intended maneuvers of nearby vehicles is essential because it can reduce the number of
fatal accidents caused by hazardous lane change maneuvers. By developing methods to
detect these maneuvers, both drivers and autonomous vehicles can take evasive action to
avoid collisions.

Detecting lane change maneuvers can be achieved through various methods. These
methods use sensors such as camera, radar, and LiDAR to understand the environment
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Figure 1.3. Most used sensor technologies for autonomous driving applications.

(Figure 1.3.). We can summarize the use of these sensors as follows and the comparison
of the sensors according to their sensing performance is given in Table 1.1.:

• Camera: Cameras can be used for tasks such as identifying objects in the envi-
ronment, getting depth-based information, and tracking their movement based on
previous frames.

• Radar: These sensors use radio waves to detect nearby objects. They can be used to
measure the distance, speed, and direction of objects.

• LiDAR: LiDAR stands for "Light Detection and Ranging" so that it uses lasers to
create a 3D map of the surrounding environment. Utilizing 3D maps is very effective
in identifying and tracking objects.

Once the surrounding vehicles have been detected by the use of any one or more of
these methods, different cues can be used to recognize the future maneuver of each vehicle,
such as the speed of the vehicle, the distance between the vehicle and the other vehicles in
the lane, vehicle blinker in on or off, the presence of any obstacles in the road, etc. Each
of those cues can be used as input by different techniques like rule-based, probabilistic
reasoning, and deep learning methods.

Table 1.1. Comparison of sensors on environment sensing (Source: Song and Li (2022)).

Criteria Camera Radar LiDAR
Short range detection (0-1m) Medium Medium Medium
Mid range detection (1-30m) Good Good Good
Long range detection (>30m) Poor Medium Good
Angular accuracy Good Medium Good
Velocity accuracy Poor Good Poor
Distance accuracy Poor Poor Good
Operation in adverse weather Poor Good Poor
Operation at night Poor Good Good
Delay Good Good Good
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Rule-based systems can be used to define a set of rules that can be used to identify
lane change maneuvers. These rules can be based on expert knowledge or on data that
has been collected from real-world driving situations, as previously stated. Probabilistic
reasoning techniques can be used to calculate the probability that a lane change is likely
to be happened by considering the environmental cues.

After deep learning has become popular due to its effectiveness in numerous com-
puter vision and natural language processing tasks (Tekir and Bastanlar (2020)), naturally
researchers proposed deep neural network models to identify lane change maneuvers.
These models are trained on a large dataset of videos or sensor data that includes examples
of both lane-changing and non-lane-changing maneuvers.

The development of methods to detect lane change maneuvers is an active area
of research. Several different approaches are being explored, and a combination of
approaches will likely be needed to achieve the desired level of accuracy and reliability.
There are many reasons why it is hard to develop methods to detect hazardous lane change
maneuvers. One of the reasons that the road environment is full of different objects and
conditions that can make it difficult to track the movement of vehicles. For example, other
vehicles, pedestrians, cyclists, and buildings can all block the view of the road, making it
difficult to see where other vehicles are and what they are doing. The weather can also
make it difficult to see, such as rain, snow, and fog. Secondly, vehicles can change lanes
in a variety of different ways. There is no single way that vehicles change lanes. Some
vehicles may signal their intent to change lanes, while others may not. Some vehicles
may change lanes quickly, while others may change lanes slowly. Additionally, vehicles
may change lanes for a variety of reasons, such as to avoid an obstacle or to get to their
destination faster. Lastly, the accuracy of the methods needs to be high. Even a tiny error
detecting a lane change maneuver could lead to a collision. This is why it is important to
develop highly accurate methods.

1.1 Contributions of the Thesis

The contribution of this thesis work can be summarized below:

• Due to the absence of a benchmark dataset for the classification of potentially
dangerous cut-in maneuvers in traffic, two distinct cut-in/lane-pass classification
datasets have been created from the publicly available Berkeley Deep Drive (BDD)
dataset (Yu et al. (2020)) and Prevention dataset (Izquierdo et al. (2019b)).

• A new scene representation has been presented to be used in the classification of
vehicle maneuvers, where the vehicle(s) and ego lane information are highlighted,
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which is obtained from videos collected from the front camera of the vehicle.

• A new method utilizing a coordinate-based LSTM network has been introduced
for the classification of cut-in/lane-pass maneuvers. This identical approach is also
applied to the detection of lane change maneuvers (Nalcakan and Bastanlar (2022)).

• A self-supervised contrastive video representation learning approach has been intro-
duced and evaluated on the cut-in/lane-pass dataset and the lane change classification
dataset. This represents the first application of contrastive learning in the task of
maneuver classification (Nalcakan and Bastanlar (2023)).

• Ensemble learning techniques are applied to two deep learning approaches proposed
in this thesis work, and the performance evaluation has been done on the lane change
prediction task.

1.2 Organization of the Thesis

The thesis is organized into seven distinct chapters. Chapter 2 lays the foundation
with a problem background and literature review on trajectory-based and vision-based
maneuver classification. Chapter 3 provides information on datasets used in the thesis, the
BDD-100K Dataset and the Prevention Dataset, detailing their acquisition and labeling
process. In Chapter 4, a monocular vision-based prediction model of cut-in maneuvers
utilizing Long Short-Term Memory (LSTM) networks is explained. This chapter breaks
down the model’s methodology, the vehicle detection and tracking process, the feature ex-
traction and network architecture, and experimental results. Chapter 5 introduces a novel
approach to detecting lane change and cut-in maneuvers with self-supervised contrastive
video representation learning (CVRL), explaining the methodology, the concepts of con-
trastive learning, scene and maneuver representation, video encoder, and experimental
results, along with an ablation study. In Chapter 6, ensemble learning is applied for lane
change maneuver detection, weaving together the methods proposed in Chapters 4 and
5. Finally, the conclusion summarizes the insights gathered during this thesis work and
explores potential future directions.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

Lane change maneuvers (Figure 2.1.) represent an essential aspect of vehicle
dynamics and safe driving. They involve a vehicle moving from its current lane to an
adjacent one on multi-lane roadways. This maneuver is typically performed when a
driver intends to overtake another vehicle, prepare for a turn at an intersection, or adjust
their position due to road conditions. Executing a lane change maneuver requires a
clear understanding of the surrounding traffic scenario, including nearby vehicles’ speed,
distance, and trajectory. Therefore, it is a complex task that involves several stages: the
decision to change lanes, checking for a safe gap in the target lane, steering to move into the
target lane, and finally stabilizing in the new lane. Detecting and predicting lane change
maneuvers is crucial for driver assistance systems, as they need to react accordingly to
ensure safe and smooth driving.

Figure 2.1. Lane change maneuvers representation. (EV: ego vehicle, TV: target vehicle.)

Moreover, a cut-in maneuver (Figure 2.2.) is a specific type of lane change maneu-
ver that occurs when a vehicle moves into the lane ahead of the ego vehicle. This maneuver
is particularly challenging for the DAS because it often happens suddenly, leaving little
time for the ego vehicle driver to react. The complexity originates from the need to rapidly
adjust speed or change lanes to avoid a potential collision. Various conditions, such
as traffic congestion, road construction, or erratic driving behavior, can provoke cut-in
maneuvers. Due to the sudden nature and the potential risks associated with cut-in ma-
neuvers, accurately detecting and predicting them and responding accordingly is crucial
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for the safety of both autonomous and human-operated vehicles. As such, the ability to
detect and predict cut-in maneuvers in real-time forms a significant part of the research in
ADAS.

Figure 2.2. Lane-pass and cut-in maneuvers representation. (EV: ego vehicle, TV: target
vehicle.)

There are several approaches to tackle those challenges, from traditional physics-
based methods to modern machine learning techniques. Physics-based methods often
utilize physical models of the driving environment and heuristics derived from human
driving behavior. However, their performance is limited in complex and dynamic traffic
scenarios due to their inability to adapt to unexpected situations. On the other hand,
machine learning methods, especially deep learning, have shown great promise due to
their ability to learn complex patterns with the help of large amounts of data.

Trajectory-based classification models represent a significant methodological ap-
proach within this realm. These models focus on the path, speed, and direction of vehicles,
filtering a series of complex movements into simpler, more easily interpretable data. By
using techniques like pattern recognition, these models aim to predict future actions based
on past behavior. While these models have shown usefulness in certain scenarios, they
struggle in more complex or unpredictable traffic situations. The accuracy of trajectory-
based models relies heavily on the consistency of driving behavior, which can be influenced
by various factors such as road conditions, driver distraction, or sudden events. Therefore,
there is a need for more advanced and adaptable trajectory-based models that can handle
such complexities and uncertainties.

Vision-based classification models offer an alternative approach that takes advan-
tage of the information available in visual data. Using computer vision and deep learning
techniques, these models can analyze images or videos to detect and classify maneuvers.
They can capture complex visual details such as the orientation of the vehicle’s wheels,

9



the vehicle’s head direction, or the vehicle’s position relative to the lane markings, which
can provide valuable clues about the vehicle’s intended maneuvers. Moreover, vision-
based models can detect and respond to unexpected events or changes in the environment
that are not easily captured by trajectory-based models. However, these models also face
challenges, such as the need for large amounts of labeled data, the difficulty of handling
diverse lighting and weather conditions, and the computational complexity of image anal-
ysis. Therefore, improving the robustness and efficiency of vision-based classification
models is an important research direction.

Consequently, the review of literature on maneuver classification research was
organized into two categories according to their respective methodologies: trajectory-
based and vision-based.

2.1 Trajectory-based Maneuver Classification

While traditional physics-based methods have proven satisfactory for simple en-
vironments and short-term prediction tasks, their performance weakens in the face of
more complex scenarios. An increased focus has been recently directed toward deep
learning-based trajectory prediction methodologies, mainly due to their broader applica-
bility. These modern techniques hold the capacity to not only account for physics-related
and road-related factors - areas inherently catered to by conventional methods - but also in-
corporate interaction-related aspects. This inherent flexibility makes them notably suited
to handle more complex prediction environments. To illustrate these advanced methods,
an overview is provided in Figure 2.3..

Figure 2.3. Overview of deep learning-based trajectory-based maneuver classification
methods (Source: Huang et al. (2022)).

RNNs diverge from traditional machine learning-based methodologies and CNNs
in their ability to handle temporal information effectively (Graves (2013), Sutskever et al.
(2014)). RNNs retain information from preceding time steps and collaborate these data
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with the input to generate the output. One practical challenge with RNNs is the propensity
for gradients to diminish or explode when the number of time steps is substantial. The
introduction of gated RNNs, such as Long Short-Term Memory Network (LSTM) and
Gated Recurrent Unit (GRU), has been instrumental in mitigating this issue.

Several studies have employed Long Short-Term Memory (LSTM) as a sequence
classifier to predict vehicle maneuvers, as demonstrated in the works of Zyner et al. (2018),
Phillips et al. (2017) and Zyner et al. (2017). The process involves feature extraction
performed by LSTM cells, with the last cell’s hidden states channeled into the output
layer, aiding in the prediction of maneuvers. Altché and de La Fortelle (2017) utilized
a single-layer LSTM to anticipate the target vehicle’s trajectory. An LSTM encoder
architecture used for maneuver-based trajectory prediction was proposed by Ding and
Shen (2019), which encodes the states of the target vehicle and combines the predicted
maneuver with map information. They employed nonlinear optimization methods to refine
the initial future trajectory, incorporating interaction-related aspects, traffic regulations,
and map data. Zyner et al. (2019) employed a weighted Gaussian Mixture Model (GMM)
to predict multi-modal trajectories, using an encoder-decoder three-layer LSTM to obtain
the model parameters. This was followed by trajectory clustering based on the mode
with the highest probability. Deo et al. (2018) recommended the use of the hidden
Markov model (HMM) and the variational Gaussian mixture model (VGMM) for maneuver
trajectory classification. Initially, they collected data on various maneuvers such as lane-
pass, overtake, cut-in, and drift-into-ego-lane from highway cameras, radar, and LiDAR
data. Subsequently, they categorized all trajectories into maneuvers using HMM and
VGMM. Again, Deo and Trivedi (2018) utilized an LSTM encoder to extract temporal
information of the surrounding vehicles, which was then used as an input to a social
pooling layer (Alahi et al. (2016)) to form a ’social tensor’. The social pooling layer in this
study captures interaction-related factors between vehicles following spatial rasterization.
The social tensor is then passed to a set of CNNs to discern the spatial correlation of
vehicles. Finally, six LSTM decoders are employed to generate distributions for six
specific maneuvers, comprising three lateral (left lane change, right lane change, and keep
lane) and two longitudinal (brake, normal speed) maneuvers.

Wang et al. (2021) used publicly available NGSIM dataset (US101 (2007)) as input
to an LSTM following a fully connected layer. They converted the target vehicle’s (x, y)
coordinates, velocity, and acceleration to a feature vector accompanied by the availability
in the right lane and left lane to classify future maneuvers. Similarly, Chen et al. (2022)
used the same data but contrary to previous approaches, they extracted features from
raw trajectory data with a multi-layer perceptron (MLP) than those features fed into a
convolutional social LSTM (CS-LSTM) (Deo and Trivedi (2018)) to classify maneuver.
In a different study, Scheel et al. (2019) fed the trajectories of the right lane change,
left lane change, and follow maneuvers into an attention-based LSTM network, reporting
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individual maneuver prediction accuracies of 0.784, 0.962, and 0.679 for left lane change,
follow, and right lane change, respectively. In a different work, an encoder-decoder
LSTM architecture was adopted by Park et al. (2018), which encoded historical trajectory
features and determined the most probable future trajectories through the beam search
algorithm. A dual LSTM network model for predicting the target vehicle’s trajectory was
suggested by Dai et al. (2019), with one network dedicated to modeling the trajectories of
surrounding vehicles and the other focusing on the interaction among these vehicles. Xin
et al. (2018) utilized an LSTM to predict the target vehicle’s lane and employed a separate
LSTM to predict the trajectory based on the vehicle’s state and the predicted lane. An
LSTM-based framework that integrates intention and trajectory predictions was proposed
by Zhang et al. (2021). The vehicle’s intention at intersections is predicted by one LSTM
model, while the trajectory is predicted by another LSTM-based model utilizing previous
trajectories. Zhang et al. (2020) utilized Temporal Convolutional Network (TCN) to
predict the lane-change maneuver and trajectories. They used steering wheel angle 𝛼

to represent lane-changing behavior and x,y coordinates of the vehicles as the vehicle’s
trajectory history.

There are studies in the literature that propose methods focusing solely on clas-
sifying the cut-in maneuver among trajectory-based maneuver classification studies. For
instance, in a work of Chen et al. (2019), a unique control strategy for trajectory tracking
in cut-in scenarios is proposed, employing an RNN with LSTM cells for driver behavior
prediction and a Model Predictive Control (MPC) approach for tracking the reference
trajectory, considering different cut-in behaviors. Another study Jeong and Yi (2020)
introduces an interactive motion predictor utilizing a Bidirectional-LSTM module to dis-
tinguish the intentions of cut-in vehicles. The system, trained and validated on a robust set
of human-driven vehicle trajectories, comprises three key components: maneuver recog-
nition, trajectory prediction, and an interaction module, collectively working to predict
future trajectories of surrounding vehicles based on potential maneuvers and collision
risks. In recent work, Yoon et al. (2021) proposes a probabilistic trajectory prediction
method for cut-in vehicles, which employs Gaussian Process Regression (GPR) to obtain
a probability distribution of behavioral parameters from real-world vehicle trajectories.
This predictive approach is integrated into the motion planning and control of autonomous
vehicles, and evaluations show that it improves prediction accuracy and ride quality in
multi-vehicle cut-in scenarios, whilst maintaining safety. The comprehensive review of
mentioned studies is given in Table 2.1..
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2.2 Vision-based Maneuver Classification

The surge in deep learning applications, particularly in vision, has led recent
research in vision-based maneuver classification to predominantly employ convolutional
neural networks (CNNs) for capturing the scene’s visual information. The typical method-
ology involves using a CNN as a feature extractor, where video frames serve as input, cou-
pled with an RNN or LSTM for classification tasks. In a study by Izquierdo et al. (2019a)
investigates two deep learning methodologies for predicting vehicle lane changes. The first
technique in the study adopts a multi-channel representation of temporal data by mapping
the scene appearance, target vehicle motion history, and surrounding vehicles’ motion
histories to the red, blue, and green channels respectively, which is then passed as input
to a CNN model. The second approach blends CNN and LSTM to encapsulate temporal
characteristics, with both methodologies aiming to embed local and global contexts with
temporal insights to forecast lane change intentions. Another study (Fernández-Llorca
et al. (2020)), created a method that initially crops Regions of Interest (ROIs) from the
original frames and exploits two modes of input video, namely the high frame rate video
and its optical flows. This approach facilitated a comparison between two-stream CNNs
and spatio-temporal multiplier networks. A subsequent study by the same team (Biparva
et al. (2021)) broadened this comparison by incorporating a slow-fast network which is an
approach that utilizes videos of both high and low frame rates. This addition reportedly
improved performance, indicating a slight edge over the previously evaluated alternatives.
Differently, Laimona et al. (2020) focused on comparing the performance of RNN and
LSTM on the same lane change prediction dataset, using only the center coordinates of
the target vehicle that are extracted from target vehicle’ segmentation mask as features.
The authors observed that the LSTM was able to achieve commendable results in the clas-
sification of lane change maneuvers, despite the feature set being relatively small. Their
findings underlined the efficacy of LSTM networks in such applications.

While the aforementioned studies relied on the Prevention dataset (Izquierdo et al.
(2019b)) for their method training and validation, some researchers have used different
datasets for vision-based maneuver classification. For instance, Lee et al. (2017) proposed
a methodology suitable for adaptive cruise control, leveraging front-facing radar and
camera outputs to detect lane change maneuvers. Their strategy involved converting traffic
scenes into simplified bird’s eye view (SBEV) images, which were fed into a CNN for
predicting lane keeping, right cut-in, and left cut-in intentions. Similarly, Yurtsever et al.
(2019) presented a deep learning framework to classify potentially hazardous lane change
behavior using in-car camera video footage. They employed a pre-trained Mask R-CNN
model for segmenting vehicles in the scene and a CNN+LSTM model for categorizing
the behaviors as either dangerous or safe. The work of Simoncini et al. (2022) proposed
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a framework for unsafe maneuver classification. They used dashcam video data to train
a ResNet50 model and GPS/IMU sensor data to extract position-based features. All
features process through a novel spatio-temporal attention selector and fully connected
layer for classification results. Peng et al. (2018) proposed a Driver Maneuvering Detection
(DMD) system which considers right and left turn maneuvers and straight motion. The
DMD system integrates a distance-based context representation, vehicle trajectory features,
and VGG-19 network features from front-view video images. Additionally, it employs
an LSTM-based neural network model to understand the temporal sequences in driving
maneuvers. This system presents a unique blend of traditional and deep learning methods
to enhance maneuver detection accuracy. The comprehensive review of mentioned studies
is given in Table 2.2..

Table 2.2. Comparison of the vision-based maneuver classification studies.

Reference Method Features Classification
Lee et al. (2017) CNN SBEV LC
Peng et al. (2018) VGG19+LSTM V, L TL, TR, S

Izquierdo et al. (2019a) LeNet+LSTM V NLC, LLC, RLC
Yurtsever et al. (2019) CNN+LSTM* V SF, R

Fernández-Llorca et al. (2020) ST-CNN* V, OF NLC, LLC, RLC
Biparva et al. (2021) Two Stream CNN* V NLC, LLC, RLC

Simoncini et al. (2022) ResNet50 + MHA V, L SF, USF

Method: (MHA: multi-head attention, ST: spatio-temporal), Features: (V: video frames, OF: optical flow,
L: location, SBEV: simplified bird’s-eye view), Classification: (NLC: no lane change, LLC: left lane
change, RLC: right lane change, LC: lane change, TL: turn left, TR: turn right, S: go straight, SF: safe,

USF: unsafe, R: risky), *multiple CNN architectures evaluated.

Over the course of this thesis, three distinct yet interconnected approaches to
maneuver classification were formulated and implemented.

• In the first approach, the focus was placed on the coordinate features of the target ve-
hicle. Long Short-Term Memory (LSTM) networks were used for the classification
task of their capability to handle sequential data. Three different LSTM network
variants were experimented with to ensure a comprehensive evaluation.

• The second approach was based on extracting the rich spatial-temporal information
embedded in video frames. These frames were given as input to a 3D variant
of ResNet18, a deep Residual Neural Network that can process sequential data,
which is videos in our case. A two-stage training process was employed with this
network. The initial stage involved self-supervised contrastive learning, a technique
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that captures intricate data patterns without supervision. The network was then fine-
tuned with labeled data in the second stage, enhancing its maneuver classification
capabilities.

• The third approach involved the application of ensemble learning techniques to
combine the strengths of the best-performing methods from the first two approaches.
The resulting model benefited from the individual strengths of each component
method, creating a robust maneuver classification system.

Each of these methodologies, developed within the context of this thesis, offered a
comprehensive and in-depth exploration of maneuver classification, contributing signifi-
cantly to the literature in the field of advanced driving assistance systems.
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CHAPTER 3

DATA SETS

While developing a machine learning-based solution for maneuver classification,
we researchers need a wide collection of samples. The datasets used for maneuver
classification fall into two categories. The first category includes nonpublic datasets,
which have been collected by researchers or by companies, and remain inaccessible to
the research community. On the other hand, the second category contains publicly shared
datasets, offering more opportunities for comparative studies and the development of
universally applicable solutions. For a comprehensive understanding of the open-source
datasets leveraged for maneuver classification and the annotations they provide, refer to
Table 3.1..

3.1 BDD-100K Cut-in/Lane-pass subset and Labeling

Figure 3.1. Start and end points of maneuvers that are labeled as cut-in.

A dedicated subset was crafted to tackle the unique challenges associated with
cut-in and lane pass classification from the widely-used Berkeley Deep Drive Dataset
(BDD-100K). This dataset has a collection of 100,000 driving videos, each labeled across
ten diverse tasks ranging from road object detection to driveable area identification. The
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Table 3.1. Comprehensive review of publicly available datasets for maneuver
classification (Source: Fang et al. (2022)).

Dataset # of
Samples

Annotations Labels Task

BDD-100K
Yu et al. (2020)

100000
L, 3DB,

VT, V, W,
SM, SD

10 types TP

VIENA2
Aliakbarian et al. (2018)

15000 I, B S, TL, TR,
LC, C, NC

AP

INTERACTION
Zhan et al. (2019)

40054 I, L, SM, B RD, NC, LC, M MC, TP

BLVD
Xue et al. (2019)

654 I, L, T,
B, 3DB

22 types MC, FLP, TP

PREVENTION
Izquierdo et al. (2019b)

11* I, L, VT, B LC MC, FLP

LOKI
Girase et al. (2021)

664 DES, I, L,
3DB, SM, W

14 types TP, MC, FLP

DADA-2000
Fang et al. (2021)

2000 I, DA, B C, LC, VO, NC AP, MC, DAP

Annotations: (L: location, 3DB: 3D boxes, VT: vehicle type, V: velocity, T: trajectory, W: weather, B:
behavior, DES: destination, SM: semantic map, SD: scene description), Labels: (C: cross, NC: non-cross,
TL: turn left, TR: turn right, VO: vehicle overtake, LC: lane change, S: stop, M: merge, NC: near collision,

RD: move along the roundabout), Task: (TP: trajectory prediction, AP: accident prediction, MC:
maneuver classification, FLP: future location prediction, DAP: driver attention prediction), *given as

driving records’ number.

collected videos have varied driving conditions containing different times of the day and
featuring data from several cities like New York, Berkeley, San Francisco, and Tel Aviv.
From this extensive collection of videos, a subset of 875 sequences was extracted that
contain cut-in and lane-pass maneuvers. These focused sequences were extracted from a
collection of approximately 20,000 videos. The final distribution of this subset includes
405 cut-in samples and 470 lane-pass samples, offering a diverse range of examples for
each maneuver type. The process of labeling these cut-in samples within our dataset is
conducted by specific principles, as illustrated in Figure 3.1.. At the beginning of the
sequence, the target vehicle is positioned in a separate lane, with no clear indicators of
an upcoming cut-in. The critical lane change event (cut-in) is triggered when the target
vehicle breaches the designated safety field, which is marked by green lines in the figure.
The cut-in sequence is concluded as the vehicle fully enters the ego-lane, regardless of its
alignment within the lane. For the lane-pass class, vehicles are labeled as they pass the
ego-vehicle from either the right or left-hand side while they reside within the safety field.
This approach to labeling provides a robust, well-annotated set of maneuvers ideal for the
training and evaluation of the developed classification models.
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3.2 Prevention Dataset and Cut-in/Lane-pass Subset Labeling

In 2019, Izquierdo et al. (2019b) from the University of Alacá published a bench-
mark dataset called "The PREVENTION dataset: a novel benchmark for PREdiction of
VEhicles iNTentIONs" for lane change prediction task. The dataset has 356 hours of driv-
ing video which is recorded mostly on highways. They provide detections, trajectories,
maneuver labels, and raw data. Continuous improvements are being made to the dataset
according to Izquierdo et al. (2019b), but the current version offers only three labels for
vehicle maneuvers: "left lane change", "right lane change", and "no lane change". The
labeled maneuver distribution of the dataset is given in Table 3.2.. The addition of labels
for left cut-in, right cut-in, cut-out, and hazardous classes are anticipated, but these labels
are not yet included in the dataset. Formulation of their maneuver labeling approach is
given in Figure 3.2..

Table 3.2. Labeled maneuvers distribution of lane change prediction dataset.

Label No. of samples Average no. of frames
No LC 3375 50.9
Left LC 218 96.8
Right LC 343 80.1

Two separate subsets were created from this dataset: a cut-in/lane-pass subset and
a lane change detection subset. The number of samples utilized for lane change detection
and cut-in detection tasks are detailed in Table 3.3.. The prepared subsets also have the
same skewness since the original dataset’s distribution of samples for the no lane change
and lane change categories is imbalanced.

In the cut-in/lane-pass detection subset, sequences contain a minimum of 60 frames
for compatibility with the BDD-100K cut-in/lane-pass dataset. The labeling of these
sequences aligns with the process illustrated in Figure 3.1.. Meanwhile, for the lane change
detection subset, sequences with at least 50 frames have been included, to maximize the
quantity of samples. The lane change detection subset’s label distribution is consistent
with the studies that use the Prevention dataset as given in Figure 3.2..
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Figure 3.2. Start and end points of maneuvers that are labeled as a lane change.

Table 3.3. Sample distribution of both subsets on lane change detection and
cut-in/lane-pass detection tasks created from the Prevention Dataset.

Class
Task Lane Change

Detection
Cut-in/Lane-pass

Detection
No Lane Change 3375 -
Left Lane Change 218 -
Right Lane Change 343 -

Lane-pass - 332
Cut-in - 187
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CHAPTER 4

Monocular Vision-based Prediction of Cut-in Maneuvers with

LSTM Networks

4.1 Methodology

In this work, we developed a method aimed at detecting the cut-in maneuvers that
could potentially pose a risk to the ego vehicle (Nalcakan and Bastanlar (2022)). Our
strategy was rooted in computer vision, and we used videos collected from a single RGB
camera installed in front of the vehicle. This setup allowed us to classify the maneuvers
of the target vehicle based on the most recent video frames.

The pipeline is designed in two distinct stages: initially, two different CNN-based
approaches are employed for vehicle detection and tracking. An LSTM-based strategy for
the classification of maneuvers follows this. The focus is on maximizing computational
efficiency, which leads to using a limited set of features for the classification stage rather
than overloading the CNNs with RGB frames. Our research was centered on the vehicles
ahead, and we utilized only a single forward-looking RGB camera installed within the
vehicle. This approach offered a level of simplicity, distinguishing our work from other
studies that used a combination of camera, radar, and LiDAR sensors.

The proposed methods have been evaluated using two different datasets: the
BDD-100K and Prevention Cut-in/Lane-pass Classification subsets. These subsets were
created as detailed in Chapters 3.1 and 3.2. The BDD-100K subset comprises 875 video
clips, while the Prevention Dataset subset includes 519 video clips. Each clip contains
vehicle maneuvers categorized as either cut-in or lane-pass and represents two seconds
of action (30 frames per second). The number of frames used to represent this duration
varies, including sequences of 15, 30, 45, or 60 frames. In addition to those datasets,
the LSTM-3Class model was also evaluated using the Prevention Dataset for lane change
detection. This dataset, which consists of 3936 video clips, provides a different set of
data for comparison with the studies in the literature. Originally, the LSTM-3Class model
operates with inputs of 15, 30, 45, and 60 frames. However, for this task, a maximum of
50 frames was included to align with previous works and retain more samples.

The methodology was structured in three steps. The first step involved using a
CNN-based vehicle detection system, where we utilized YOLOv4 (Bochkovskiy et al.
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(2020)) to recognize vehicles in each frame of the sequence. The second step involved
tracking the detected vehicles using DeepSort (Wojke et al. (2017)). In the final step, we
fed the features extracted from the detected and tracked bounding boxes of vehicles in
front into an LSTM network for classification (Figure 4.1.).

Figure 4.1. Pipeline of the proposed approach. Following the steps for extracting the
bounding boxes of target vehicles (TVs), the baseline LSTM method uses feature vectors
of TVs and classifies maneuvers as cut-in or lane-pass. LSTM-3class method classifies into
3: right cut-in, left cut-in, or lane-pass classes. As a third alternative, LSTM-2classLR
has two separate LSTMs for left-hand side and right-hand side TVs. We conducted
experiments with varying sequence lengths (15, 30, 45, and 60 frames) all representing
two seconds of the video.

Our approach was designed to be computationally cost-effective compared to
previous methods (Biparva et al. (2021); Fernández-Llorca et al. (2020); Izquierdo et al.
(2019a); Yurtsever et al. (2019)) that fed CNNs with video frames and used complex
architectures. We fed a limited number of features extracted from the input sequence
into an LSTM, which allowed us to exceed the classification accuracies reported in other
studies. Furthermore, our method was capable of producing a classification decision every
two seconds.
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4.1.1 Vehicle Detection & Tracking

Building upon the methodology we’ve outlined, the first crucial step in our re-
search was the detection of vehicles. This was achieved using a Convolutional Neural
Network (CNN), specifically the YOLOv4 model. This model was tasked with identifying
vehicles in each frame of the video sequence under analysis. The decision to use a CNN-
based approach for vehicle detection was strategic. CNNs have demonstrated exceptional
performance in image recognition tasks, and their capacity to automatically learn spatial
hierarchies of features made them an optimal choice for our process pipeline.

Once vehicles were detected, we tracked them using DeepSort, a high-quality
tracking algorithm. This step was crucial as it allowed us to maintain continuity in vehicle
identification across multiple frames, which was essential for the subsequent maneuver
classification step.

Our approach to processing detected vehicle information was designed with com-
putational efficiency in mind. Instead of overloading the CNN with RGB frames, we
extracted a small set of features from the detected and tracked bounding boxes of vehicles.
This approach not only reduced computational load but also provided us with the essential
information needed for maneuver classification.

However, it’s important to note that our vehicle detection approach was not without
its challenges. The accuracy of detection and tracking was dependent on various factors,
including the quality of the video footage, the lighting conditions, and the movement of
the vehicles.

4.1.2 Feature Extraction and Network Architecture

Following the vehicle detection stage, we moved on to the feature extraction and
network architecture phase of our research. This stage was integral to our methodology
and was designed to be both efficient and effective.

In our approach, we separated from previous studies by obtaining features directly
from the bounding box of the target vehicle. This was a strategic decision, designed to
reduce computational load and streamline the process. Instead of feeding a complex CNN
with video frames, we extracted a small number of features from the detected and tracked
bounding boxes of vehicles. This approach was computationally cheaper and provided us
with the essential information needed for maneuver classification.

Our network architecture was designed around an LSTM network (Figure 4.2.).
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Figure 4.2. Utilized LSTM architecture.

The features we extracted from the bounding boxes of vehicles were fed into this LSTM
network for classification. The LSTM network was designed to be simple yet effective. It
consisted of a single layer and fewer parameters in the classification step, contributing to
its computational efficiency. Despite its simplicity, the LSTM network was able to exceed
the classification accuracies reported in the compared studies. Moreover, it was able to
produce a classification decision every two seconds, demonstrating its effectiveness in
real-time decision-making.

As hyperparameters of the LSTM, various hidden unit sizes, batch sizes, activation
unit and optimizer types, and dropout rates are evaluated to find the best-performing LSTM
architecture. Evaluated hyperparameters are given in Table 4.1..

Table 4.1. Evaluated LSTM hyperparameters

Hidden
Units

Batch
Sizes

Optimizer Activation Dropout

60
128
256
512

5
10
50
100

Adam
RMSProp
AdaDelta

ReLU
Sigmoid

Tanh

0
0.25
0.5
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4.2 Experimental Results

4.2.1 Classification Results on BDD-100K Cut-in/Lane-pass Classifi-

cation Subset

We evaluated our approach with different methods where classification strategy
varies. As a baseline method, a single layer LSTM model is trained with four features
(center (𝑥,𝑦) coordinates, width and height of the target vehicle’s bounding box) for a
side-agnostic 2-class classification, i.e. each sample is a cut-in or a lane-pass. In LSTM-
3class method, samples are classified as left-hand side cut-in, right-hand side cut-in and
lane-pass. This second strategy is closer to several lane-change prediction studies in the
literature, where maneuvers were classified as left lane-change, right lane-change and no
lane-change. By examining the target vehicle’s center coordinates, it is straightforward to
extract if it is on the left or on the right of the ego vehicle. Thus, as a third method (LSTM-
2classLR), we train two LSTM networks one responsible for left-hand side maneuvers and
the other for the right-hand side, each performs a 2-class classification (cut-in/lane-pass).
Test performances of these 3 methods are presented in Table 4.2..

Since most previous studies reported accuracy, precision, and recall, our evaluation
is based on these metrics. For all models mentioned above, hyperparameters (Table 4.1.)
were optimized by grid search and the model with the highest accuracy on the validation
set was evaluated on the test set.

Our baseline method (best-performing model parameters are: 128 hidden units,
5 as batch size, 0.25 dropout), which classifies the sequences without separating if the
maneuver is on the right or on the left, reached an accuracy of 0.9256 with 30-frame and
60-frame sequences and slightly lower accuracy for other sequence lengths. Taking into
account the side of the cut-in maneuver (3 classes: right cut-in, left cut-in, lane-pass)
caused a very slight increase in the performance, achieving 0.9324 accuracy. However,
when we train two separate networks for the right-hand side and left-hand side (LSTM-
2classLR (best-performing model parameters are: 512 hidden units, 10 as batch size, 0.25
dropout)), the classification accuracy increases to 0.9585. The best values were obtained
with 30-frame sequences, but for almost all other lengths accuracies were increased
compared to the baseline and LSTM-3class methods.
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Table 4.2. Cut-in/Lane-pass classification results of different methods for varying
sequence lengths on BDD-100K dataset

Method Sequence
Length

Accuracy Precision
(Cut-in)

Recall
(Cut-in)

Precision
(Lane-pass)

Recall
(Lane-pass)

Baseline

15 0.8851 0.8551 0.8939 0.9114 0.8780
30 0.9256 0.8841 0.9531 0.9620 0.9048
45 0.9189 0.9275 0.9014 0.9114 0.9351
60 0.9256 0.9275 0.9143 0.9241 0.9359

LSTM-3Class

15 0.9324 0.8960 0.9230 0.9620 0.9383
30 0.9121 0.8667 0.9077 0.9494 0.9146
45 0.9324 0.8769 0.9245 0.9494 0.9146
60 0.9256 0.8829 0.9077 0.9620 0.9383

LSTM-2ClassLR

15 0.9311 0.9321 0.9021 0.9302 0.9524
30 0.9585 0.9494 0.9500 0.9651 0.9648
45 0.9452 0.9171 0.9483 0.9651 0.9434
60 0.9519 0.9160 0.9648 0.9767 0.9439

4.2.2 Classification Results on Prevention Cut-in/Lane-pass Classifica-

tion Subset

Each method tested on the BDD-100K dataset is also evaluated on the Prevention
cut-in/lane-pass subset (cf. Section 4.2). Accuracy, precision, and recall results with
different sequence lengths are shown in Table 4.3.. While all three models are highly
successful, LSTM-2ClassLR (best-performing model parameters are: 512 hidden units,
10 as batch size, 0.25 dropout) is slightly better than the others, which is consistent with the
results of the BDD-100K dataset. These results indicate that the success of the proposed
approach is not specific to a dataset and works well on a benchmark dataset as well.

We observe occasional drops in precision and recall values of cut-in compared to
those of the lane-pass class. This is due to the skewness in the dataset. Since the number
of lane-pass samples is much higher, the model is inclined to prefer lane-pass more. In the
lane-change study with this dataset, Biparva et al. (2021) as well, reported lane-change
precision and recall are much lower than those of the no lane-change class.
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Table 4.3. Cut-in/Lane-pass classification results of different methods for varying
sequence lengths on Prevention dataset

Method Sequence
Length

Accuracy Precision
(Cut-in)

Recall
(Cut-in)

Precision
(Lane-pass)

Recall
(Lane-pass)

Baseline

15 0.9718 0.9259 0.8333 0.9775 0.9909
30 0.9799 0.9630 0.8667 0.9820 0.9954
45 0.9638 0.8519 0.8214 0.9775 0.9819
60 0.9759 0.8889 0.8276 0.9777 0.9865

LSTM-3Class

15 0.9638 0.6786 0.9286 0.9865 0.9733
30 0.9719 0.9524 0.8958 0.9775 0.9909
45 0.9558 0.7976 0.7976 0.9730 0.9730
60 0.9598 0.6786 0.7500 0.9820 0.9732

LSTM-2ClassLR

15 0.9788 0.9285 0.8903 0.9845 0.9920
30 0.9740 0.9286 0.8452 0.9791 0.9919
45 0.9665 0.9286 0.7917 0.9710 0.9918
60 0.9789 0.9524 0.8690 0.9818 0.9946

4.2.3 Lane Change Prediction Results on Prevention Dataset

To compare with the studies in the literature, we trained our LSTM-3Class model
for lane change detection using the Prevention Dataset, which Biparva et al. (2021),
Fernández-Llorca et al. (2020), and Izquierdo et al. (2019a) used in their studies. As
we explained above, the LSTM-3Class model runs with 15, 30, 45, and 60-frame inputs.
Since we allowed 50-frame sequences in the lane change detection subset (to keep more
samples), we compare only the results of 15-frame, 30-frame, and 45-frame LSTM-3Class
models with other studies. That comparison can be seen in Table 4.4..

Even though the focus of our study is cut-in prediction, we see that if the proposed
LSTM-based approach (best-performing model parameters are: 512 hidden units, 100 as
batch size, 0.25 dropout) is trained for lane change prediction, its performance exceeds the
previously reported performances, which are 3-class lane-change prediction accuracies
of 0.7440 in Izquierdo et al. (2019a), 0.9190 in Biparva et al. (2021), and 0.9194 in
Fernández-Llorca et al. (2020).
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Table 4.4. Comparison with the previous lane change maneuver classification studies.

Method Accuracy
Biparva et al. (2021) Slow-Fast Networks 0.9190

Izquierdo et al. (2019a) LeNet + LSTM 0.7440
Fernández-Llorca et al. (2020) Spatiotemporal Multiplier Network 0.9194

Ours (15-frames) LSTM-3Class 0.9270
Ours (30-frames) LSTM-3Class 0.9371
Ours (45-frames) LSTM-3Class 0.9484

4.2.4 Computational Efficiency

Execution times of our LSTM models for 30-frame input sequences can be seen in
Table 4.5.. As shown, vehicle detection and tracking steps of our pipeline take much more
time than the classification step, which is not more than 2 milliseconds. Since the vehicle
detection step also exists in previous works before the classification step, our approach has
the advantage of having just one layer and fewer parameters in the classification step.

Table 4.5. Execution time comparison of evaluated LSTM methods.

Method
Vehicle Detection

and Tracking
(sec/seq)

Classification
(msec/seq)

Total
(sec/seq)

Baseline
4.002

2.11 4.0041
LSTM-3class 1.29 4.0032

LSTM-2classLR 1.95 4.0039

All evaluations are done on a PC with Ubuntu 16.04, i7-7700K CPU, 16 GB RAM and an Nvidia GeForce
GTX 1080 GPU.

Computation times are directly proportional to the number of frames. Thus,
the total execution time is 2 seconds for 15-frame sequences and 8 seconds for 60-
frame sequences. Please note that, in the proposed approach, we process two seconds of
video regardless of the number of frames in the sequence (15, 30, 45, or 60). Vehicle
detection and tracking modules can be executed as frames arrive. Thus, if we use 15-
frame sequences, we are able to produce a classification result (cut-in/lane-pass) for the
scene every two seconds. As can be seen in Tables 4.2. and 4.3., the results of 15-frame
sequences are either the best or very close to the best results. From this point of view, we
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can argue that the proposed approach can be considered for real-time implementations to
detect cut-in maneuvers.

As mentioned before, we employ CNNs for vehicle detection, however different
from the previous studies, we obtain features directly from the target vehicle bounding
box and feed them to an LSTM. This is computationally cheaper than feeding a complex
CNN with video frames to extract features (Biparva et al. (2021); Fernández-Llorca et al.
(2020); Izquierdo et al. (2019a); Yurtsever et al. (2019)). Thus, the feature extraction and
classification times are longer for the methods in the literature.

29



CHAPTER 5

Maneuver Detection with Self-supervised Contrastive Video

Representation Learning

Supervised learning has revolutionized the landscape of machine learning, yet the
insatiable demand for a large volume of labeled data remains a significant challenge. This
limitation paves the way for the emergence of self-supervised learning, an effective method
that leverages the bounty of unlabeled data to derive meaningful representations that can
be subsequently used in fine-tuning a supervised training method with a smaller labeled
dataset.

Self-supervised contrastive learning has recently gained significant traction, espe-
cially in computer vision, owing to its outstanding performance in several applications
(Bastanlar and Orhan (2022); Le-Khac et al. (2020)). As an example of some of these
applications, MoCo (He et al. (2020)) and SimCLR (Chen et al. (2020)) incorporate both
negative (dissimilar) and positive (similar) examples in their strategies. However, BYOL
(Grill et al. (2020)) and SimSiam (Chen and He (2021)) achieve comparable performance
solely using positive examples, demonstrating different augmentations of the same in-
stance. Although the task in these seminal works was image classification, soon after,
many other tasks such as object detection and semantic segmentation benefited from self-
supervised contrastive learning as well (Radford et al. (2021); Li et al. (2022); Orhan et al.
(2022)).

In the context of video analysis, Qian et al. (2021) introduced Contrastive Video
Representation Learning (CVRL), a self-supervised learning methodology aimed at ex-
tracting spatiotemporal visual features from unlabeled video footage. The technique uti-
lizes a contrastive loss function to drive similar video clips in the embedding space closer
together while distancing video clips originating from different videos. Building on this,
Tao et al. (2020) and Han et al. (2020) expanded this framework with intra-negative and
intra-positive sampling and concurrent network training, respectively, Lin et al. (2021) and
Knights et al. (2021) incorporated meta-learning and temporal coherence loss to enhance
video representation learning further.

Despite the impressive advancements achieved in human action classification using
these methods, their application in vehicle maneuver classification, another task involving
video analysis, still poses distinct challenges. The two tasks significantly differ in aspects
like visual features, environmental variability, and the importance of temporal information.
In contrast to human actions, vehicle maneuvers occur in a largely uniform environment
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and lack distinct visual cues. Moreover, the temporal sequence of events is paramount in
vehicle maneuver classification.

The presented work in this chapter extends the self-supervised learning approach
by Qian et al. (2021), tailoring it to overcome the unique challenges in vehicle maneuver
classification (Nalcakan and Bastanlar (2023)). Utilizing simplified video clips with
suitably chosen augmentations, this thesis represents, to the best of the author’s knowledge,
the first application of self-supervised learning in predicting vehicle maneuvers.

5.1 Methodology

In this study, the potential of self-supervised learning was leveraged to enhance
the detection of both lane change and cut-in maneuvers in front of the ego vehicle. This
approach allowed for the use of a large dataset without the need for maneuver labeling.
Self-supervised contrastive learning is utilized with the video representation learning
methodology, which has been proposed by Qian et al. (2021) as the framework. The
framework comprises two phases (Figure 5.1.). In the self-supervised training phase,
the encoder network is pre-trained with unlabeled highway-recorded video clips with
contrastive loss to learn vehicle maneuver representations and their interactions with the
ego-lane. To enhance self-supervised learning, we converted the videos to high-level
representations of the scene (simplified views), which is done by segmenting vehicles and
ego-lane and subtracting background. The same high-level representation extraction is
applied to the prepared cut-in/lane-pass datasets and lane change detection dataset and is
used to fine-tune the encoder while training a classification head to classify the maneuver
in the scene or maneuver of the target vehicle.

Figure 5.1. Overview of the proposed framework. After self-supervised learning with
contrastive loss, the MLP head is discarded, a new classification head is added to the 3D
ResNet backbone, and supervised retraining is conducted.
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5.1.1 Contrastive Video Representation Learning

Contrastive video representation learning is a form of self-supervised learning.
This approach is characterized by its ability to learn distinctive features from data by
comparing similar (positive) and dissimilar (negative) examples. The goal is to make the
representations of similar examples closer and those of dissimilar examples farther apart
in the embedding space (Figure 5.2.).

Figure 5.2. An example self-supervised contrastive learning scenario. The positive pairs
are generated from the anchor frame(or video) with random center crop and horizontal
flip, and negative ones are collected randomly from the dataset.

The InfoNCE loss (Oord et al. (2018)), a type of contrastive loss, plays a crucial
role in this learning process. It is a function that quantifies the difference between the
representations of positive and negative pairs. By minimizing the InfoNCE loss, the
model is encouraged to generate similar representations for different augmentations of the
same video clip and dissimilar representations for augmentations of different video clips.
Furthermore, it allows positive pairs to be close and lets others to be distant on feature
space by using the equation L = 1

𝑁

∑𝑁
𝑖=1 L𝑖 and L𝑖:

L𝑖 = − log
exp

(
sim

(
𝒛𝑖, 𝒛

′
𝑖

)
/𝜏

)∑2𝑁
𝑘=1 1[𝑘≠𝑖] exp (sim (𝒛𝑖, 𝒛𝑘 ) /𝜏)

(5.1)
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where 𝒛𝑖, 𝒛
′
𝑖

denotes the encoded representations of the two augmented clips of the 𝑖𝑡ℎ

video, 𝑁 is the number of samples in the batch producing a total of 2𝑁 augmentations per
batch, sim(𝒖, 𝒗) = 𝒖⊤𝒗/∥𝒖∥2∥𝒗∥2 is the inner product between two ℓ2 normalized vectors,
1[.] is an indicator to exclude the self-similarity of video 𝒛𝑖, and 𝜏 > 0 is a temperature
parameter.

Therefore, augmentations have a significant impact on self-supervised learning.
They introduce variability and help the model generalize better to unseen data. In the
context of this study, different augmentations of the same video clip were used to create
positive pairs, while augmentations of different video clips were used to create negative
pairs. This strategy not only enriched the diversity of the training data but also enhanced
the model’s ability to learn a wide range of maneuver patterns and scenarios. Conse-
quently, this led to an improvement in the detection capabilities of the model for both
cut-in maneuvers and lane-change maneuvers. Figure 5.3. shows details of the proposed
maneuver representation learning phase.

5.1.2 Scene Representation

The extraction of scene representation from videos is a crucial aspect of our
methodology. Since the detection of maneuvers is directly related to vehicles and lane
lines, we chose to feed the framework with a simpler representation of the scene, which
includes the vehicles in front and ego-lane, rather than the original image sequence
(Figure 5.4.). These representations capture the essential features of each scene, such as
the positions and movements of surrounding vehicles and the ego-lane, while filtering out
less relevant details. Vehicle representations were created by a state-of-the-art instance
segmentation method, Detectron 2 (Wu et al. (2019)), and the ego-lane mask was extracted
by YOLOPv2 (Han et al. (2022)) model. We also down-sampled the original video clips
from 60 to 20 frames by taking one of every three frames. Since lane change prediction
studies in the literature make decisions per vehicle, i.e., target-based, the simplified view
we created for lane change prediction only includes the target vehicle mask and the ego-
lane mask. In summary, we used scene-based simplified view data for all models in our
cut-in/lane-pass detection methods and target-based simplified view data for all models in
our lane change detection methods.

The advantage of using these scene representations over raw video frames is
twofold. Firstly, they provide a simplified and more abstract view of the scene, which can
help the model focus on the most important elements for maneuver detection. Secondly,
they reduce the dimensionality of the input data, which can make the learning process more
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Figure 5.3. Contrastive Maneuver Representation Learning. First, we create simplified
video clips by extracting the vehicle and ego-lane masks from raw videos. Then, different
temporally consistent augmentations (e.g. crop, flip, shear, rotation) are applied to the
simplified video clips randomly before giving them as input to our video encoder (3D-
ResNet18). For self-supervised learning, extracted feature tensors of each sample in
mini-batch are compared with InfoNCE loss such that representations of positive pairs
(green arrows) are brought together, and representations of negative pairs (red arrows) are
put far apart.
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efficient and less prone to overfitting. The use of scene representations also has a significant
impact on the creation of new augmentations for self-supervised learning. By working
with these representations, we can generate augmentations that maintain the essential
features of the original scenes while introducing variability in less important aspects. This
can help the model learn to recognize a wide range of maneuver patterns and scenarios
and generalize better to unseen data. Furthermore, the use of scene representations allows
for the creation of more diverse and challenging negative pairs, which can further enhance
the effectiveness of the contrastive learning approach.

Figure 5.4. Generation of scene-based simplified view with an example cut-in maneuver
from BDD-100K Cut-in/Lane-pass Subset. Overlapping masks of vehicles and ego-lane
are in different colors. The figure shows four frames of a single sequence, whereas the 3D
network uses 20 of them for classification. The frame height is reduced from 600 to 400
pixels to remove the ego vehicle’s hood and some sky.

5.1.3 Augmentations

To enable the self-supervised model to learn the spatial and temporal attributes of
the scene, the augmentations we use should imitate different situations that may not be
included in the labeled data set. At the same time, augmentations should not include cases
that would not occur in real life. For that reason, we employed five different augmentations
for video representation learning. Of these methods, random rotation and random shear
were used to imitate the various differences in the road view of the in-vehicle camera,
horizontal flip to simulate that the maneuver could take place on the opposite side, and
center crop to simulate that the camera may have a narrower field of view. To ensure that
representations are not affected by the random selection of augmentations, they are kept
consistent temporally. In other words, the same augmentation is applied to all frames of a
video clip in the same way. Application of the augmentations to scene-based simplified
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view of cut-in sequences and lane-pass sequences are given in Figure 5.5..
In addition to the four augmentations mentioned above, considering that the speed

of the maneuvering vehicle can change in time, we employed another augmentation which
is called temporal elastic transformation (TET)(Stamoulakatos et al. (2021)). The method
works in one of the two different paths. In the first possibility, it stretches the beginning
and the end of the video shrinks the middle, and in the second, it does the opposite.

Algorithm 1 conveys the details of producing spatial and temporal augmentations
in self-supervised contrastive learning.

Algorithm 1: Random Temporally Consistent Augmentation
Input: Video clip 𝑉 = {𝐼1, 𝐼2, · · · , 𝐼𝑁 } with 𝑁 frames // N equal to 20 frames

Crop: Randomly select a scale value s from [0.6, 1.0] Define 𝑛𝑒𝑤𝑤𝑖𝑑𝑡ℎ = 𝑤𝑖𝑑𝑡ℎ ∗ s and
𝑛𝑒𝑤ℎ𝑒𝑖𝑔ℎ𝑡 = ℎ𝑒𝑖𝑔ℎ𝑡 ∗ s

Resize: Resize the cropped region to size of 224 × 224
Rotate: Randomly select a rotation degree d from [−5◦ , 5◦ ]
Flip: Select a flag F 𝑓 from {0, 1} with 50% on 1
Shear: Randomly select a shear value sh for x and y coordinates from [−0.2, 0.2]
TET: Randomly select operation type from {−1, 1}
Select: Randomly select a number from [1, 5]
𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑆𝑒𝑙𝑒𝑐𝑡 ()
for n ∈ {1, 2, · · · , 𝑁 } do

𝐼′𝑛 = 𝐹𝑙𝑖𝑝 (𝐼𝑛) if F 𝑓 = 1 and if 𝑛𝑢𝑚𝑏𝑒𝑟 = 1
𝐼′𝑛 = 𝑅𝑜𝑡𝑎𝑡𝑒 (𝐼𝑛) by d degree if 𝑛𝑢𝑚𝑏𝑒𝑟 = 2
𝐼′𝑛 = 𝑅𝑒𝑠𝑖𝑧𝑒 (𝐶𝑟𝑜𝑝 (𝐼𝑛 , 𝑛𝑒𝑤𝑤𝑖𝑑𝑡ℎ, 𝑛𝑒𝑤ℎ𝑖𝑔ℎ𝑡)) if 𝑛𝑢𝑚𝑏𝑒𝑟 = 3
𝐼′𝑛 = 𝑆ℎ𝑒𝑎𝑟 (𝐼𝑛) transform x and y with sh shear value if 𝑛𝑢𝑚𝑏𝑒𝑟 = 4
𝐼′𝑛 = 𝑇𝐸𝑇 (𝐼𝑛) if 𝑛𝑢𝑚𝑏𝑒𝑟 = 5

end
Output: Augmented video clip 𝑉′ = {𝐼′1, 𝐼

′
2, · · · , 𝐼

′
𝑁
}

According to Tao et al. (2020), all the augmentations mentioned above are defined
as intra-positive. They propose a method called Inter-intra Contrastive training. This uses
intra-negative samples (same video with broken temporal relationships between frames)
next to inter-negative samples for negative sampling and optical flow or frame differences
for positive sampling in contrastive learning (Figure 5.6.). They suggest that the use
of intra-negative augmentations in self-supervised contrastive learning also contributes
positively to success. Therefore, to evaluate the effect of intra-negative augmentations for
our method, we tried two of their intra-negative augmentations (temporal repeating and
temporal adjacent shuffle) together with intra-positive augmentations as an ablation study.
Temporal repeating means a frame is randomly selected from the video, and the entire
video is composed only from this frame. In this way, temporal and motion information is
made non-existent. Temporal adjacent shuffle means the temporal order of the motion is
broken by randomly shuffling the frames of the video. As a note, the horizontal flip that
we used as a positive augmentation for the cut-in/lane-pass detection task was repurposed
as an intra-negative augmentation for the lane change prediction task. This was due to
the fact that the horizontal flip disrupted class-specific information (by confusing the right
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Figure 5.5. Example outputs of applied augmentations on cut-in and lane-pass maneuvers.
Each row shows a different augmentation of the original sequence (top row). Only
temporal elastic transformation (TET) augmentation is not included in the figure. Since
it stretches/shrinks the video sequence in time, showing the effect with a few frames is not
possible.

and left side information). As an ablation study, six negative samples were added to each
batch in self-supervised training next to the other 10 video samples.

As an ablation study on another augmentation, since we will be using target-based
simplified view data for the lane change prediction task, we proposed two target-based
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Figure 5.6. Feature space representation of intra-positive, intra-negative, and inter-negative
samples. (Source: Tao et al. (2020))

augmentations (random mask move and random mask scale) where we apply various
transformations to the target vehicle mask and the ego-lane mask without disturbing the
information about the maneuver class. We used these target-based augmentations in
addition to the augmentations we use in self-supervised contrastive learning.

5.1.4 Video Encoder

We processed video frames using ResNet3D-18 (Hara et al. (2018)) with 3D con-
volution kernels instead of the 2D convolution kernels as in original ResNet architectures
to encode spatio-temporal features of scenes. We trained two different backbone archi-
tectures, one is single ResNet3D-18, and the other is ResNet3D-18 with a multi-layer
projection (MLP) head on top, as suggested in Chen et al. (2020); Qian et al. (2021).
During supervised retraining, we dropped the MLP head and added the classification head
onto ResNet3D-18 (Figure 5.7.b).

For the supervised retraining phase, we evaluated three different classification
heads (one linear layer, two nonlinear layers, and four nonlinear layers) on top of backbones.
Evaluated architectures are depicted in Figure 5.7.a.

Self-supervised training of video encoder was performed with Adam optimizer
(Kingma and Ba (2014)), 0.1 as initial learning rate, 32 as batch size, 500 as training
epochs, and 0.1 for temperature 𝜏. In the supervised re-training phase, the same optimizer
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was used, but the batch size was reduced to 8 and the learning rate to 0.001. Different
numbers of epochs (between 200 and 500) were evaluated.

Figure 5.7. Evaluated network architecture alternatives for classification head (a) and
self-supervised training (b).

5.2 Experimental Results

5.2.1 Results on BDD-100K Cut-in/Lane-pass Classification Subset

We compared the classification performances of four approaches by reporting
the best fold and 5-fold cross-validation accuracies and F1 scores of each approach on
the Cut-in/Lane-pass maneuver detection task. As supervised baselines, first we used
a 2D-CNN(MobileNetV2 (Sandler et al. (2018))) to extract features from each frame
of the clip and give those as input to an LSTM (Baseline 1), secondly, the same 3D-
CNN architecture of our CVRL approach which is a ResNet3D-18 was evaluated as
Baseline 2. Baselines 1 and 2 achieved 5-fold CV accuracy of 82.03% and 90.69% with
2-layer nonlinear classification head on the BDD cut-in/lane-pass subset (Table 5.1.).
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Classification accuracy increased by ∼2% and achieved 92.52% with self-supervised pre-
trained ResNet3D-18 network and 4-layer nonlinear head.

Table 5.1. 5-fold cross-validation results of both supervised baselines and
self-supervised approaches on BDD-100K Cut-in/Lane-pass subset.

Approach Backbone Classification
head type

5-fold CV
acc (%)

5-fold CV
F1 score

Linear 78.35 ± 04.91 79.32 ± 04.90

Baseline 1 MobileNetV2+LSTM 2-layer nonlin. 82.03 ± 02.30 82.53 ± 01.83

4-layer nonlin. 79.72 ± 03.49 79.74 ± 03.52

Linear 85.19 ± 03.35 85.19 ± 03.48

Baseline 2 ResNet3D-18 2-layer nonlin. 90.69 ± 02.19 90.59 ± 02.27

4-layer nonlin. 88.70 ± 02.12 88.70 ± 02.27

Linear 91.15 ± 02.45 91.18 ± 02.42

Self-sup.1 ResNet3D-18 2-layer nonlin. 92.37 ± 01.79 92.30 ± 01.81

4-layer nonlin. 92.52 ± 01.74 92.54 ± 01.78
Linear 90.99 ± 02.05 90.98 ± 02.11

Self-sup.2 ResNet3D-18+MLP 2-layer nonlin. 92.21 ± 01.47 92.18 ± 01.48

4-layer nonlin. 92.21 ± 02.38 92.16 ± 02.37

5.2.2 Results on Prevention Cut-in/Lane-pass Classification Subset

The same experimental configuration as in 5.2.1 was used on the Prevention cut-
in/lane-pass classification subset. Baselines 1 and 2 performed 5-fold CV accuracies of
86.20% and 89.40% respectively with the 4-layer nonlinear classification head (refer to
Table 5.2.). Reflecting the performance in the BDD-100K subset, self-supervised training
enhanced the performance of the baselines by approximately 2%. This was achieved using
the Self-sup.2 model, which is the ResNet3D-18+MLP network with a linear classification
head, reaching a 5-fold CV accuracy of 91.60%.
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Table 5.2. 5-fold cross-validation results of both supervised baselines and
self-supervised approaches on the Prevention Cut-in/Lane-pass subset.

Approach Backbone Classification
head type

5-fold CV
acc (%)

5-fold CV
F1 score

Linear 82.80 ± 04.66 80.55 ± 05.29

Baseline 1 MobileNetV2+LSTM 2-layer nonlin. 84.00 ± 02.92 82.09 ± 03.54

4-layer nonlin. 86.20 ± 04.09 84.32 ± 04.95

Linear 88.60 ± 03.21 87.11 ± 03.70

Baseline 2 ResNet3D-18 2-layer nonlin. 88.80 ± 02.17 87.44 ± 02.45

4-layer nonlin. 89.40 ± 02.30 88.00 ± 02.70

Linear 90.20 ± 01.64 88.77 ± 01.89

Self-sup.1 ResNet3D-18 2-layer nonlin. 88.60 ± 02.41 87.01 ± 02.66

4-layer nonlin. 87.00 ± 02.92 85.03 ± 03.43

Linear 91.60 ± 01.95 90.41 ± 02.32
Self-sup.2 ResNet3D-18+MLP 2-layer nonlin. 90.20 ± 02.39 88.79 ± 02.72

4-layer nonlin. 90.00 ± 03.24 88.58 ± 03.74

5.2.3 Results on Prevention Lane Change Detection Dataset

The results presented in Table 5.3. demonstrate the effectiveness of the four ap-
proaches used in this study for the Lane Change Detection task. The table shows the 5-fold
cross-validation results of both supervised baselines and self-supervised approaches on
the Prevention Lane Change Prediction Dataset.

The most successful method among previous vision-based studies had reached a
lane change classification accuracy of 91.94% with supervised learning (without cross-
validation) on Prevention Dataset.

The self-supervised approach 1, which used a linear classification head type with
the ResNet3D-18 backbone, achieved the highest 5-fold cross-validation accuracy of
92.13% and F1 score of 73.13%. This approach outperformed all other methods, including
the supervised baselines and the self-supervised approach 2, representing an increase of
0.19 percent in accuracy over the highest reported result in the literature. However, studies
in the literature that worked on the same dataset did not report cross-validation results
which are crucial for assessing the robustness of a model. Since the results they reported
are from their best models, if we compare these with the best fold results from our methods,
we can say that our most successful model, the self-supervised approach 2, using a 4-layer
nonlinear classification head with the ResNet3D-18+MLP backbone, achieved an accuracy
of 93.06% and an F1 score of 75.90%. This represents a 1.12 percent increase in accuracy
over the most successful model in the literature.

These results demonstrate the potential of the proposed methods for improving
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Table 5.3. 5-fold cross-validation results of both supervised baselines and
self-supervised approaches on the Prevention Lane Change Prediction Dataset.

Approach Backbone Classification
head type

5-fold CV
acc (%)

5-fold CV
F1 score

Linear 88.28 ± 01.11 63.26 ± 03.37

Baseline 1 MobileNetV2+LSTM 2-layer nonlin. 89.35 ± 01.89 66.66 ± 07.27

4-layer nonlin. 88.51 ± 02.51 76.22 ± 06.85

Linear 90.15 ± 00.60 70.42 ± 02.45

Baseline 2 ResNet3D-18 2-layer nonlin. 90.08 ± 00.60 68.08 ± 03.37

4-layer nonlin. 89.62 ± 01.09 63.60 ± 05.52

Linear 92.13 ± 00.61 73.13 ± 01.40
Self-sup.1 ResNet3D-18 2-layer nonlin. 91.74 ± 00.44 72.59 ± 01.64

4-layer nonlin. 91.40 ± 00.26 70.25 ± 01.70

Linear 91.21 ± 00.71 71.21 ± 01.76

Self-sup.2 ResNet3D-18+MLP 2-layer nonlin. 91.47 ± 00.63 71.87 ± 02.22

4-layer nonlin. 91.93 ± 00.77 72.63 ± 02.38

lane change detection accuracy. Notably, the proposed methods have allowed us to exceed
the classification accuracies reported in other studies that used the Prevention Dataset.
This comparison with previous studies highlights the advancements made in this research,
setting a new benchmark for lane change detection accuracy. A significant aspect of this
work is the use of self-supervised contrastive learning for the first time in the context of lane
change detection. This innovative approach has contributed to the superior performance
of our methods, demonstrating the potential of self-supervised learning in this domain.

5.3 Ablation Study

In the ablation study section, we explore the performance and effectiveness of
various components of our methodology. This section is divided into four ablation studies.
Each of these studies was conducted to investigate the impact of different elements in
our proposed self-supervised method on performance and to explore whether alternative
techniques could have been proposed. This comprehensive examination allows us to
understand the significance of each element in our approach and provides a foundation for
potential enhancements or modifications in future research.

The first two studies, ’Effect of Simplified Scene Representation’ and ’Effect of
Spatial and Temporal Augmentations’, are conducted on the BDD-100K Cut-in/Lane-pass
Classification Subset. We employ our best-performing approach, Self-supervised 1, with
the ResNet3D-18 backbone for these studies. The other two studies, ’Effect of Negative
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Augmentations’ and ’Effect of Target-based Augmentations’, are carried out on the Pre-
vention Lane Change Classification dataset. In these cases, we utilize both self-supervised
methods, ResNet3D-18 and ResNet3D-18+MLP, to comprehensively understand their
performance under different conditions.

5.3.1 Effect of Simplified Scene Representation

To measure the impact of our proposed simplified scene representation on per-
formance, which is designed to facilitate the learning of vehicle movements and their
relationship with the ego lane through the proposed augmentations in the self-supervised
model, we created five different datasets from our main dataset, each with a different
setting. These datasets are original RGB frames, RGB frames with vehicle masks, RGB
frames with vehicle masks and ego lane mask, black background with vehicle masks, and
the proposed simplified scene representation (black background with vehicle masks and
ego lane mask). This variety of settings allows us to isolate and evaluate the contribution
of each element in the scene representation.

As results in Table 5.4. indicate, the simplified version outperformed the original
RGB input type in either masked or unmasked form. Furthermore, the application of
vehicle and ego-lane masks appears to enhance the classification performance across both
input types, supporting the effectiveness of our proposed simplified scene representation.

Table 5.4. 5-fold CV accuracies (%) with different data types to evaluate the impact of
simplified scene representation. Video clips’ original versions and simplified versions

were evaluated with different highlighted information in the scene.

Input type Vehicle
masks

Ego-lane
mask

Linear
layer

2-layer
nonLinear

4-layer
nonLinear

x x 57.29 58.86 59.00
Original ✓ x 57.57 60.14 60.14

✓ ✓ 70.29 69.43 60.29

Simplified ✓ x 67.00 69.86 67.43
✓ ✓ 91.15 92.37 92.21
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5.3.2 Effect of Spatial and Temporal Augmentations

In a subsequent ablation study, the impact of individual augmentations on the per-
formance of the top-performing approach (Self-sup.1 as per Table 5.1.) was examined. As
shown in Table 5.5., the most effective results were achieved when all augmentations were
activated during training. Interestingly, while temporal augmentation alone did not prove
sufficient, its combination with spatial augmentations led to a noticeable enhancement in
performance. This suggests that the interplay between spatial and temporal augmentations
plays a significant role in optimizing the model’s performance.

Table 5.5. Ablation study results of different augmentation types applied in the
self-supervised learning phase. Self-sup.1 approach’s (ResNet3D-18) results are given

since it is the best performer in Table 5.1..

Classification
head type

Augmentations 5-fold CV
acc (%)

5-fold CV
F1 score

Linear Spatial 90.53 ± 01.99 90.40 ± 02.02

2-layer nonlin. Spatial 92.06 ± 01.92 92.03 ± 01.86

4-layer nonlin. Spatial 92.21 ± 01.74 92.18 ± 01.80

Linear Temporal 87.63 ± 01.00 87.58 ± 01.00

2-layer nonlin. Temporal 81.22 ± 02.78 81.02 ± 02.80

4-layer nonlin. Temporal 80.31 ± 02.05 80.01 ± 02.07

Linear Spatial&Temporal 91.15 ± 02.45 91.18 ± 02.42

2-layer nonlin. Spatial&Temporal 92.37 ± 01.79 92.30 ± 01.81

4-layer nonlin. Spatial&Temporal 92.52 ± 01.74 92.54 ± 01.78

5.3.3 Effect of the Use of Intra-positive and Intra-negative Augmenta-

tions

In this ablation study, we examined the impact of negative augmentations on the
performance of our self-supervised models. The experiments for this study were conducted
on the Prevention Lane Change Classification dataset, utilizing both self-supervised meth-
ods, ResNet3D-18 and ResNet3D-18+MLP, to gain a comprehensive understanding of
their performance under different conditions.
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As detailed in Chapter 5.1.3, augmentations in self-supervised contrastive learning
can be classified as intra-positive, inter-negative, and intra-negative. In this study, we
evaluated the effect of two intra-negative augmentations, namely temporal repeating and
temporal adjacent shuffle. Additionally, horizontal flip augmentation which was used
as a positive augmentation for the cut-in/lane-pass detection task was repurposed as an
intra-negative augmentation for the lane change prediction task due to its disruption of
class-specific information (by confusing the right and left side information). For this
ablation study, six randomly created negative samples were added to each batch in self-
supervised training alongside the other ten video samples which some are intra-positive
augmented samples and some are not augmented samples.

Table 5.6. presents the results of the experiments. For the ResNet3D-18 backbone,
the 2-layer nonlinear classification head type achieved the highest 5-fold cross-validation
accuracy of 91.90%, with a corresponding F1 score of 73.01%. For the ResNet3D-
18+MLP backbone, the linear classification head type achieved the highest 5-fold cross-
validation accuracy of 91.27%, with a corresponding F1 score of 70.76%. Although
both models with intra-negative augmentations get close to the results of our original
method using intra-positive augmentations, they were unable to surpass those results.
Furthermore, upon examining the instances where the models made errors, we found
that they were unable to correct the mistakes made by our original model configuration.
Therefore, we did not consider conducting a self-supervised training by combining intra-
positive and intra-negative augmentations.

Table 5.6. Experimental results of the use of intra-positive and intra-negative
augmentation types applied in the self-supervised learning phase. Results can be

compared with Table 5.3.

Backbone Classification
head type

5-fold CV
acc (%)

5-fold CV
F1 score

Linear 91.56 ± 00.86 71.79 ± 03.41

ResNet3D-18 2-layer nonlin. 91.90 ± 00.61 73.01 ± 02.12
4-layer nonlin. 91.57 ± 00.61 72.89 ± 02.29

Linear 91.27 ± 00.46 70.76 ± 02.22

ResNet3D-18+MLP 2-layer nonlin. 90.61 ± 00.85 69.52 ± 02.14

4-layer nonlin. 90.91 ± 00.69 70.38 ± 01.85
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5.3.4 Effect of Target-based Augmentations

Since the lane change detection task involves maneuvers based on the target vehicle,
as an ablation study we wanted to see if applying augmentations to the target vehicle mask
and the ego lane mask could teach new representations of the maneuvers during self-
supervised training.

As previously mentioned in Chapter 5.1.3, we proposed two target-based aug-
mentations, "random mask move" and "random mask scale". These augmentations apply
various transformations to the target vehicle mask and the ego-lane mask without dis-
turbing the information about the maneuver class. For this study, only these target-based
augmentations were used in self-supervised contrastive learning.

Looking at the 5-fold cross-validation results (Table 5.7.), the ResNet3D-18 model
with a linear classification head type achieved an accuracy of 90.12% and an F1 score of
66.40%. On the other hand, the ResNet3D-18+MLP model with a linear classification head
type achieved a slightly higher accuracy of 90.39% and an F1 score of 67.69%. Although
the target-based augmentations contributed to the training of the model, they were not as
successful in learning the representations of the maneuvers as the augmentations in the
original version of the model. Moreover, when we look at the instances where the models
made errors, as in the case of negative augmentations, we see that they did not improve
the original model.

Table 5.7. Experimental results of target augmentation types applied in the
self-supervised learning phase. Results can be compared with Table 5.3.

Backbone Classification
head type

5-fold CV
acc (%)

5-fold CV
F1 score

Linear 90.12 ± 00.73 66.40 ± 02.78

ResNet3D-18 2-layer nonlin. 89.79 ± 00.56 65.88 ± 01.34

4-layer nonlin. 89.22 ± 00.69 64.35 ± 03.76

Linear 90.39 ± 00.84 67.69 ± 02.61

ResNet3D-18+MLP 2-layer nonlin. 90.48 ± 00.74 68.24 ± 01.84
4-layer nonlin. 89.75 ± 01.03 66.59 ± 02.60
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CHAPTER 6

Ensemble Learning for Maneuver Detection

Ensemble learning is a powerful technique that leverages multiple learning algo-
rithms to obtain better predictive performance than the results that can be achieved from
any single learning algorithm alone. Recently, ensemble methods have been incorporated
into the realm of deep learning and have demonstrated impressive results across a variety
of tasks (Ganaie et al. (2022)). Ensemble techniques typically involve training multiple
neural networks by varying the initial parameters or using different architectures alto-
gether. The individual models (referred to as "base learners") are then combined using
various strategies to improve generalization ability and robustness over any single model.

There are several ways to create ensemble models in deep learning. One method is
bootstrapped ensembles, where different subsets of the original data are used to train dif-
ferent models. Another approach is architectural ensembles, where models with different
architectures are combined. This can be particularly effective, as models with different
architectures often learn to represent different features and thus can complement each other
(Zhang and Ma (2012)). Another approach is known as Snapshot Ensembles (Huang et al.
(2017)), where instead of relying on random initialization to produce different models, an
ensemble is created from the different local minima found during the training process of
a single network. These strategies can be further combined to form more sophisticated
ensembles.

In the context of vehicle maneuver detection, an integral component of Advanced
Driver Assistance Systems, ensemble learning is beneficial and critical. ADAS are des-
ignated to enable vehicle safety and enhance the driving experience. Therefore, ensuring
high performance, robustness, and accuracy of these systems is vital. Ensemble learning
serves as a powerful mechanism toward this goal. By integrating the predictive capabili-
ties of multiple models, the technique offers a strategic means to offset individual model
weaknesses and improve the overall performance of the maneuver detection system.

Equally significant is the ability of ensemble learning to account for a wide va-
riety of situations that a single model might fail to consider. Given the dynamic and
unpredictable nature of road scenarios, it is vital for ADAS to be comprehensive in their
detection and response mechanisms. Ensemble learning, with its capacity to combine
diverse model perspectives, helps ensure the detection system is well-equipped to handle
an extensive range of driving situations. The synthesis of multiple models’ insights aids
in building a more resilient and reliable maneuver detection system, thereby contributing
substantially to vehicle safety and the effectiveness of ADAS.
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The applicability of ensemble learning to our problem was explored by the method-
ologies explained in Chapters 4 and 5 of this thesis work. These methods were evaluated
with two ensemble learning strategies, soft voting and weighted sum voting. They are
designed to leverage the strengths of each method, offset their weaknesses, and optimize
overall performance. Since the most studied task in the literature is lane change prediction,
we decided to examine our methods’ effectiveness with ensemble learning when training
on the Prevention Lane Change Prediction dataset. An outline of the ensemble learning
approach is presented in Figure 6.1..

Figure 6.1. Overview of the ensemble learning approach. The target-based simplified
view is used to extract features for each of the networks. Center coordinates, width, and
height of the TV mask are given as input to the LSTM3class model from Chapter 4,
and the simplified view clip is processed via the CVRL model from Chapter 5. As the
ensemble learning method, two score-based fusion approaches are applied to the prediction
probabilities of each model.

Soft Voting combines the probabilistic predictions from all models. Unlike ’hard’
voting which only considers the most frequently predicted class, soft voting accounts
for the degree of confidence (probability) associated with each prediction. This tech-
nique enhances predictive performance, particularly when the ensemble models yield
well-calibrated probabilistic outputs. Thus, soft voting offers a nuanced mechanism that
can leverage the predictive certainty of individual models to derive more accurate ensem-
ble predictions. In our case, the prediction probability outputs of the coordinate-based
LSTM network (LSTM3class) and self-supervised contrastive video representation learn-
ing model (CVRL) were summed separately for each class and the class with the maximum
prediction probability was selected as the mutual prediction.

Weighted Sum Voting also known as weighted majority voting, is a method for
making final predictions based on combining predictions from multiple models. The
basic idea is that instead of giving each model in the ensemble an equal vote in the final
decision (as in soft voting), each model is assigned a weight that reflects its performance
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or importance. These weights can be set based on each model’s accuracy or any other
performance metric. This method was chosen to leverage the complementary strengths
of the individual models. Each model was allocated a weight, representing its relative
contribution to the final decision-making process. Weights were set to range from 0.1
to 0.9 for each model, requiring that the total sum of the weights equals 1, ensuring a
balanced contribution from both models. This array of weight assignments enabled us to
systematically explore the impact of the relative model influence on the overall ensemble
performance.

Data set. Given that our lane change detection dataset involves making decisions
per target vehicle, our simplified view includes only the target vehicle mask and the ego-
lane mask (Figure 6.2.). The target vehicle mask is generated using a state-of-the-art
instance segmentation method, Detectron 2 (Wu et al. (2019)), while the ego-lane mask
is extracted using YOLOPv2 (Han et al. (2022)). In order to ensure that the models work
with the same sequence lengths, we have included the videos with a length of at least
60 frames from the examples in the Prevention Lane Change Prediction dataset into our
dataset. The first 60 frames of each video were selected and then reduced to 20 frames as
shown in Figure 6.2. and the same dataset was used both in LSTM-3class and in the self-
supervised contrastive video representation learning method. Since the average number
of frames per video for the examples belonging to the "no lane change" class is below 60
(Table 3.2.), the result obtained by LSTM-3class is lower than Table 4.4.. Additionally,
we removed samples from our data set in this experiment that either belonged to vehicles
coming from the opposite lane or had a vehicle mask area value smaller than the threshold
we set. The dataset was distributed as follows, 2734 instances of "no lane change" along
with 340 "right lane change" and 217 "left lane change" instances.

Figure 6.2. Generation of target-based scene representation with an example left lane
change maneuver from Prevention Dataset. Overlapping masks of vehicles and ego-lane
are in different colors. The figure shows four frames of a single sequence, whereas the
LSTM Network and 3D network use 20 of them for classification. The frame height is
reduced from 600 to 400 pixels to remove the ego vehicle’s hood and some sky.
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6.1 Experimental Results

Firstly, we conduct a comparative analysis of the standalone classification perfor-
mances of three distinct approaches. This comparison is based on the highest fold and
5-fold cross-validation accuracies and the F1 scores on the lane change classification task
(refer to Table 6.1.). This evaluation allows us to assess the effectiveness of each approach
in isolation, providing a clear benchmark for their capabilities.

Table 6.1. 5-fold cross-validation results of image coordinate-based LSTM
(LSTM3class) approach (Chapter 4) and self-supervised representation learning

approach (Chapter 5) on the Prevention dataset.

Backbone Best fold
acc (%)

5-fold CV
acc (%)

Best fold
F1-score

5-fold CV
F1-score

LSTM3class 91.83 89.90 81.60 79.68
R3D-18 92.89 92.13 75.38 73.13
R3D-18+MLP 93.06 91.93 75.90 72.63

The ensemble results of the LSTM3class model with two distinct self-supervised
video representation learning models are provided in Figures 6.3. and 6.4.. Here, R3D
signifies the standalone result of the self-supervised ResNet3D-18 model and R3D+MLP
represents the standalone result of the self-supervised ResNet3D-18+MLP model, while
LSTM3class indicates the standalone result of the image coordinate-based LSTM network.
The weights of the models in the ensemble method are denoted as [𝑊1, 𝑊2], where 𝑊1

is the weight applied to LSTM3class, and 𝑊2 is the weight applied to the self-supervised
method. Notably, the soft voting and [0.5, 0.5] weighting are represented by a single bar
as they are the same.

When we examine the previous studies on the Prevention dataset, we see that lane
change classification accuracies can reach at most 90% (Biparva et al. (2021)). According
to results in Table 6.1., our video-based approach with the ResNet3D-18 model managed
to improve upon the success of methods in the literature by ∼ 2% in terms of the accuracy
metric. LSTM3class alone is not able to exceed the best accuracy in the literature, but
it boosted the accuracies when used in an ensemble with ResNet3D-18 or ResNet3D-
18+MLP. As seen in Figures 6.3. and 6.4., with the best [𝑊1, 𝑊2] pairs, ensembling
reached %94.05 accuracy (∼ 2% improvement) for the model using ResNet3D-18 and
%94.25 accuracy (∼ %2.5 improvement) for the model using ResNet3D-18+MLP. Even if
equal 𝑊1 and 𝑊2 are used (soft voting), the improvement in accuracy is significant when
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Figure 6.3. Ensemble learning results comparison of LSTM3class and ResNet3D-18(Self-
sup.1) on Prevention Lane Change Prediction dataset. *Soft voting also means [0.5, 0.5]
weighted average. 5-fold cross-validation was applied.

Figure 6.4. Ensemble learning results comparison of LSTM3class and ResNet3D-
18+MLP(Self-sup.2) on Prevention Lane Change Prediction dataset. *Soft voting also
means [0.5, 0.5] weighted average. 5-fold cross-validation was applied.

compared to standalone methods.
Moreover, in order to observe the contributions of each ensemble method to the

class-based performances of the models in no lane change (NLC), left lane change (LLC),
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and right lane change (RLC) categories, the confusion matrix results of each method from
cross-validation have been provided in Table 6.2. and 6.3. This allows us to examine the
strengths and weaknesses of the ensemble methods, by emphasizing how well each method
performs in accurately classifying each lane change maneuver type.

Table 6.2. Class-based performances of applied ensemble learning techniques with LSTM3class
and ResNet3D-18 (Self-sup.1) on Prevention Lane Change Prediction dataset (w: weight, ∗:

f1-score).

Pred.
True NLC LLC RLC Precision

NLC 501 2 5 0.986
LLC 8 20 13 0.488
RLC 6 12 43 0.705
Recall 0.973 0.588 0.705 0.747∗

Accuracy 0.929
(a) Soft Voting

Pred.
True NLC LLC RLC Precision

NLC 500 3 4 0.986
LLC 7 22 12 0.537
RLC 4 8 48 0.800
Recall 0.978 0.667 0.750 0.791∗

Accuracy 0.940
(b) LSTM3class w: 0.1,

R3D-18 w: 0.9

Pred.
True NLC LLC RLC Precision

NLC 500 3 4 0.986
LLC 8 20 13 0.488
RLC 4 8 48 0.800
Recall 0.977 0.645 0.738 0.785∗

Accuracy 0.939
(c) LSTM3class w: 0.3,

R3D-18 w: 0.7

Pred.
True NLC LLC RLC Precision

NLC 497 3 7 0.980
LLC 7 20 14 0.488
RLC 6 12 42 0.700
Recall 0.975 0.571 0.667 0.736∗

Accuracy 0.922
(d) LSTM3class w: 0.6,

R3D-18 w: 0.4

Pred.
True NLC LLC RLC Precision

NLC 495 4 9 0.974
LLC 7 21 14 0.500
RLC 6 12 42 0.700
Recall 0.974 0.568 0.646 0.732∗

Accuracy 0.919
(e) LSTM3class w: 0.7,

R3D-18 w: 0.3

Pred.
True NLC LLC RLC Precision

NLC 494 4 9 0.974
LLC 7 20 14 0.488
RLC 6 13 41 0.683
Recall 0.974 0.541 0.641 0.722∗

Accuracy 0.915
(f) LSTM3class w: 0.9,

R3D-18 w: 0.1

Due to the imbalanced nature of the Prevention lane change detection dataset,
the LSTM3class method and self-supervised contrastive learning method struggled to
distinguish left lane change and right lane change maneuvers from the video sequences in
the no lane change class. In addition, despite experimenting with various augmentations
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Table 6.3. Class-based performances of applied ensemble learning techniques with
LSTM3class and ResNet3D-18+MLP (Self-sup.2) on Prevention Lane Change

Prediction dataset (w: weight).

Pred
True NLC LLC RLC Precision

NLC 500 2 5 0.986
LLC 8 19 14 0.463
RLC 4 8 48 0.800
Recall 0.977 0.655 0.716 0.768∗

Accuracy 0.935

(a) Soft Voting

Pred
True NLC LLC RLC Precision

NLC 500 3 4 0.986
LLC 7 23 11 0.561
RLC 4 8 48 0.800
Recall 0.979 0.677 0.762 0.802∗

Accuracy 0.943

(b) LSTM3class w: 0.1,
R3D-18+MLP w: 0.9

Pred
True NLC LLC RLC Precision

NLC 500 3 4 0.986
LLC 7 21 13 0.512
RLC 3 9 48 0.800
Recall 0.980 0.636 0.739 0.780∗

Accuracy 0.938

(c) LSTM3class w: 0.3,
R3D-18+MLP w: 0.7

Pred
True NLC LLC RLC Precision

NLC 493 5 10 0.971
LLC 7 19 15 0.463
RLC 3 10 47 0.783
Recall 0.980 0.559 0.653 0.744∗

Accuracy 0.922

(d) LSTM3class w: 0.6, R3D-18+MLP w:
0.4

Pred
True NLC LLC RLC Precision

NLC 492 5 10 0.970
LLC 7 20 15 0.476
RLC 4 10 47 0.770
Recall 0.978 0.571 0.653 0.743∗

Accuracy 0.921

(e) LSTM3class w: 0.7,
R3D-18+MLP w: 0.3

Pred
True NLC LLC RLC Precision

NLC 492 6 10 0.969
LLC 7 20 15 0.476
RLC 4 9 47 0.783
Recall 0.978 0.571 0.653 0.746∗

Accuracy 0.921

(f) LSTM3class w: 0.9,
R3D-18+MLP w: 0.1

during self-supervised training in an attempt to increase the success of the self-supervised
contrastive learning model in recognizing right and left lane change maneuvers, we were
unable to enhance the precision and recall performances for these two classes.

However, almost all ensemble methods we implemented with LSTM3class not
only led to an increase in the overall accuracy rate but also allowed us to correctly classify
some right and left lane change examples that we were unable to classify accurately when
using the self-supervised method alone. This resulted in an improvement in the precision
and recall values for these classes. This demonstrates the potential of ensemble methods
in addressing classification challenges posed by imbalanced datasets and improving the
performance of individual models.
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Given the computational efficiency inherent to the LSTM-3class method, we con-
sidered it to report the ensemble computation times. To this end, we loaded both models
onto the same GPUs and measured the inference time per sequence.

As illustrated in Table 6.4., the per sequence classification time is effectively
real-time. This is because the input sequences correspond to a two-second video clip,
allowing us to make a classification decision within 0.667 seconds. Vehicle and ego
lane segmentation take most of the time, but it can still be considered real-time since it
is below one second. This quick decision-making capability is crucial in autonomous
driving systems, where timely and accurate maneuver detection is essential.

Table 6.4. Execution time comparison of evaluated methods.

Method
Vehicle and Ego lane

Segmentation
(sec/seq)

Classification
(sec/seq)

Total
(sec/seq)

LSTM-3class + ResNet3D-18 0.659* 0.011 0.6670
LSTM-3class + ResNet3D-18-MLP 0.012 0.6671

All evaluations are done on a GPU server with two parallel Nvidia Tesla P100 16 GB GPUs.
*Computation time of vehicle and ego lane segmentation operation given as total computation times of

Detectron2 and YOLOPv2.
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CHAPTER 7

CONCLUSIONS

In this thesis, we have explored the use of deep learning for predicting two safety-
critical behaviors in autonomous vehicles: lane change and cut-in maneuvers. Our ap-
proach involved the analysis of video data from onboard cameras. Progressing from
more straightforward to more complex methods, we have proposed three distinct solutions
to these challenges, offering a comprehensive study on improving safety in autonomous
vehicles.

Three distinct datasets were utilized in the evaluation of our methods. We employed
the widely acknowledged benchmark for lane change detection, the open-source Prevention
Dataset. Given the lack of publicly available datasets for cut-in maneuver detection, we
constructed two unique datasets from the Berkeley Deep Drive and the Prevention datasets.
These datasets were used to evaluate our methods for detecting cut-in and lane-pass
maneuvers.

Our first method was based on the idea that lateral and longitudinal movements of
vehicles can be good clues when we examine the nature of maneuvers. In this method, we
designed an LSTM-based framework to recognize cut-in maneuvers. For this framework,
the bounding box value of the target vehicle was detected and tracked with state-of-the-art
models and used in the feature extraction step. In the feature extraction step, the center
coordinates, width, and height information that we extracted from the bounding box of the
target vehicle were used as input in the different LSTM architectures we proposed, and the
maneuver performed by the target vehicle was recognized with this feature sequence. The
LSTM architectures we proposed have achieved successful results compared to those in the
existing literature for the cut-in maneuver detection task. However, when we attempted to
enhance the LSTM network, we encountered a limitation in our proposed method’s ability
to generalize across diverse maneuver detection datasets. For maneuver types where the
model typically demonstrated high accuracy, it began to make erroneous decisions when
the data was altered. This indicated a limitation in the model’s adaptability to different
data conditions.

Moreover, our most successful LSTM model made decisions based on the side of
the vehicle where the maneuver occurred. While the existing approach had its advantages,
a method that could process the entire dataset without any prerequisite knowledge might
offer enhanced efficiency. This led us to propose a new approach that does not rely
on prior knowledge of the maneuver’s location, thereby aiming to improve the model’s
generalizability and performance across varying datasets. Hence, as a second approach in
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this thesis work, we developed a self-supervised method to propose a more consistent and
robust model for maneuver detection.

Leveraging self-supervised learning as our second method, we proposed a frame-
work for detecting lane change and cut-in maneuvers in front of the ego vehicle. This
framework is utilized by self-supervised contrastive video representation learning method-
ology. Transitioning from an LSTM network to a self-supervised method offered multiple
advantages. The contrastive learning technique allowed the proposed model to focus on
essential features while introducing variability in less critical aspects, helping the model to
recognize a wide range of maneuver patterns and generalize better to unseen data. Further-
more, by employing different augmentations for video representation learning, imitating
different situations that may not be included in the labeled data set, thus helping the model
to learn the spatial and temporal attributes of the scene. A significant advantage of this
self-supervised learning approach is that it allows for the use of a large dataset without the
need for maneuver labeling, which can be time-consuming and expensive.

The self-supervised contrastive video representation learning framework we pre-
sented had two phases. In the self-supervised training phase, the encoder network was
pre-trained with unlabeled highway-recorded video clips with contrastive loss to learn
vehicle maneuver representations and their interactions with the ego-lane. Then self-
supervised trained backbone network was fine-tuned with a labeled dataset with different
classification head types to classify the maneuver in the scene or maneuver of the target
vehicle.

For the dataset we used to train this method, we developed a technique called
simplified scene representation to enhance self-supervised learning. In that technique,
videos were converted to high-level representations of the scene (simplified views), which
is done by segmenting vehicles and ego-lane and subtracting the background. The same
high-level representation extraction was applied to the prepared cut-in/lane-pass and lane
change detection datasets.

This model demonstrated better performance than other alternative methods, in-
cluding the evaluated supervised baselines and the secondary self-supervised approach.
In the context of the lane change detection task, the ResNet3D-18 model, when integrated
with a linear classification head, achieved the highest 5-fold cross-validation accuracy,
marked at 92.13%, along with an F1 score of 73.13%. Moreover, for the cut-in maneuver
detection task, on our BDD-100K cut-in/lane-pass classification subset, the ResNet3D-
18 model, pre-trained via self-supervision and accompanied by a four-layer non-linear
classification head, yielded an accuracy of 92.52%. This illustrates an enhancement of
approximately ∼ 2% over the closest supervised baseline. Similarly, in our Prevention
cut-in/lane-pass classification subset, models pre-trained through self-supervision have
demonstrated a significant improvement in accuracy and overall performance, surpassing
supervised baselines by approximately 2%. These findings underline the potential bene-
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fits and applicability of self-supervised learning approaches in the domain of autonomous
driving systems.

This introduced novel framework was used for the first time in the literature
for the detection of vehicle maneuvers. Our findings underscore the effectiveness of
self-supervised training methodologies in maneuver detection, outperforming traditional
supervised training across multiple tasks. Furthermore, we propose a technique of scene
simplification, which, in contrast to the utilization of raw video data, has been shown to
significantly enhance the performance of models.

The disadvantage of the simplified view method we propose is that it can be difficult
to represent some maneuvers with the vehicle mask and ego lane. If the maneuvers to be
detected are not associated with the ego lane, other features may be needed to learn the
representation of this maneuver by the model. Indeed, in some examples related to right
and left lane changes, the self-supervised method failed, and we were able to solve part of
this problem with the decision-level ensemble learning we proposed.

Although the self-supervised method can be applied to any dataset, it shows
dependency on the camera’s characteristics. In other words, if there is a difference in
camera resolution among the data, the vehicle mask and ego-lane dimensions may vary,
making it challenging to use the data collected with different camera resolutions together
in the model training. However, when data collected with the same camera resolution was
added to self-supervised training, we observed an increase in success.

When we examined the impact of the augmentations we applied to self-supervised
contrastive learning, we observed that the horizontal flip, which can diversify side infor-
mation in the cut-in maneuver detection task, and random shear and random rotate, which
can mimic the changes in the ego lane during turns, had a positive impact on accuracy per-
formance. However, while the horizontal flip was the most contributing augmentation for
cut-in maneuver detection, it served as an intra-negative augmentation in the lane change
detection task, where different classes (right lane change & left lane change) represent
the side on which the maneuver occurred. We also determined that the temporal elastic
transformation, which we used as temporal augmentation, improved performance with its
ability to mimic changes in vehicle speed. Even though the target-based and intra-negative
augmentations we tested as ablation studies contributed to the performance, they could
not achieve as successful results as the version where intra-positive augmentations were
used alone.

In the domain of autonomous vehicles, the application of ensemble learning
methodologies is of paramount importance for bolstering the safety and decision-making
efficacy of these systems. By leveraging the collective strengths of multiple deep learn-
ing models, it significantly improves the overall performance and accuracy of vehicle
maneuver detection, a critical factor in ensuring safe and effective autonomous driving.

Therefore, as a final step in our study, we integrate the two successful method-
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ologies that we proposed in this thesis using two different ensemble techniques. This
approach is then evaluated for its effectiveness in the lane change maneuver detection
task. We used soft voting and weighted sum voting as ensemble techniques. For the soft
voting, each model’s prediction probability per class is summed and the class with the
maximum prediction probability was selected as the mutual prediction. For weighted sum
voting, the weight parameters for each model were selected from 0.1 to 0.9, necessitating
that the cumulative sum of the weights equates to 1. This condition ensured a balanced
contribution from both models in the ensemble. Both ensemble methods achieved state-
of-the-art performance for the lane change detection task by at least a 2% increase over
the performance of the standalone models. Moreover, both ensemble methods improved
the class-based classification performance of the models, achieving higher recall and pre-
cision metric values than the standalone models. The observed increase in performance
can be attributed to the synergistic effect of the ensemble of the LSTM-based method
and the self-supervised pre-trained method. Individually, both these methods encountered
difficulties in distinguishing between right and left lane change maneuvers. This challenge
can be attributed to the inherent complexities in differentiating these maneuvers based on
the available data, mainly when the data is subject to variations in factors such as lighting
conditions, vehicle speed, and distance from the ego vehicle.

However, when these two models were combined in an ensemble, they were able
to compensate for each other’s weaknesses to a certain degree. The LSTM-based method,
with its ability to capture temporal dependencies in the data, complemented the self-
supervised pre-trained method, which excels in extracting useful features from the raw
data. This combination allowed the ensemble to leverage the strengths of both methods,
leading to a more robust and accurate maneuver detection system.

To present the numerical results, with the best 𝑊1 and 𝑊2 pairs on weighted sum
voting, the ensemble achieves an accuracy of 94.05% (∼ 2% improvement) for the model
using ResNet3D-18 and an accuracy of 94.25% (∼ 2.5% improvement) for the model
using ResNet3D-18+MLP. Even with equal 𝑊1 and 𝑊2 (soft voting), the improvement in
accuracy is significant compared to the standalone methods.

As a potential future research, in order to extend the applicability and robustness of
our approach in real-world traffic environments, we plan to investigate the efficacy of our
proposed self-supervised video representation learning method for maneuvers occurring
in traffic scenarios that differ from those considered in this study. Expanding the scope
of our method to incorporate a broader range of maneuvers and diverse traffic elements
- including motorbikes, bicycles, and pedestrians - could provide valuable insights and
enhance our ability to detect maneuvers. This endeavor would involve developing a more
comprehensive model capable of effectively analyzing and identifying maneuvers for
various types of vehicles and other factors related to traffic. By addressing these aspects.
We can expand the utility of our approach within different real-world traffic settings.
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